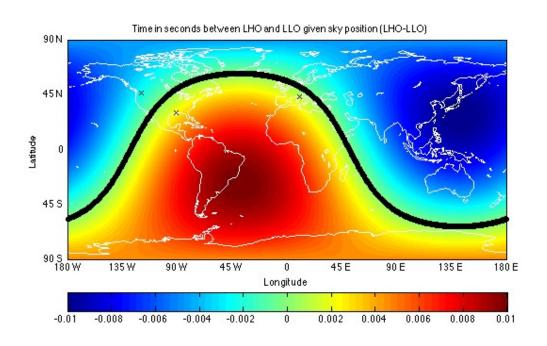


delayRatio: A GW Event Physical Likelihood Estimator Based on Detection Delays and SNR Ratios

Amber Stuver
Caltech/LIGO Livingston

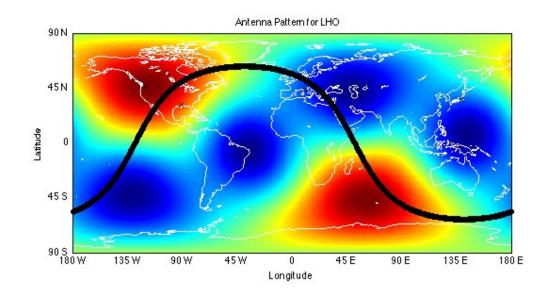


Introduction

- λ This work is part of the GW event follow-up pipeline to evaluate the 'sanity' of the candidate.
 - » The pipeline does not produce a yes/no conclusion, more like no/maybe.
- A Given a detection delay between detectors and the strength of the event in each, what is the likelihood that the event falls within physical bounds?
 - » Assume:
 - well defined detection delay
 - identical detectors
 - unpolarized gravitational waves

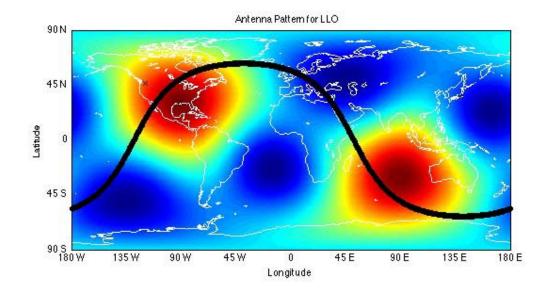
Detection delays

A ring of sky locations is constrained using the detection delay between the 2 LIGO detectors.



Event Strengths in Detectors

- λ The possible sky location circle is then projected onto the antenna pattern for each detector.
- λ The strength of the event (SNR) is the polarization averaged combination of the coefficients:


$$\rho = F_{+}^{2} + F_{\times}^{2}$$

 λ The maximum and minimum ρ are set as the maximum and minimum bounds for that time delay.

← LIGO Hanford

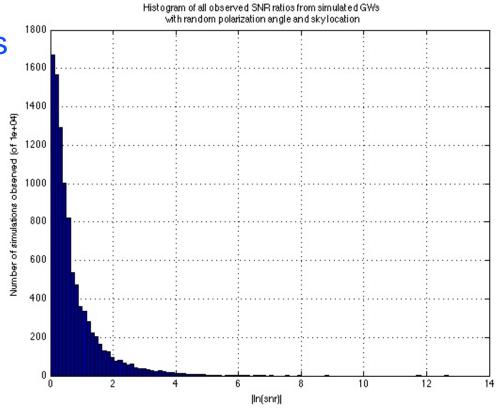
LIGO Livingston →

LIGO-G0900403-v2

Event Strength Bounds WRT Detection Delay

The following is the maximum and minimum bounds on the signal strength ratios between detector WRT detection delay.

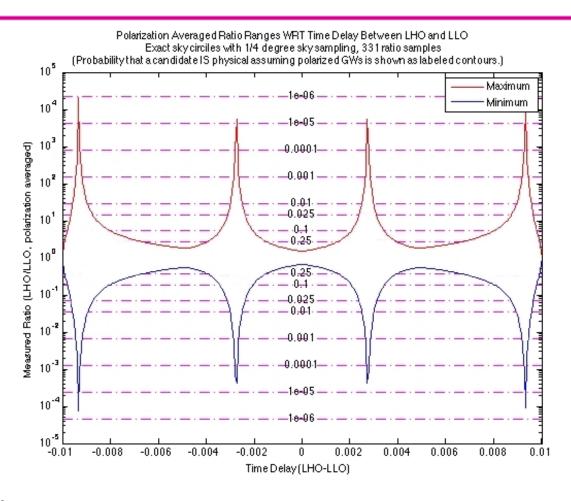
» Poles and zeros correspond to the sky circle passing over antenna pattern zeros


The Effects of Polarization

- λ Everything thus far has only considered unpolarized gravitational waves.
- The effects of polarization can pull physically possible gravitational waves outside of the unpolarized bounds.
- This effect was observed using 10⁴ simulations of randomly distributed source locations with random polarization angles.
- λ The distribution of ratios around unity is independent of detection delay.

Polarization Ratio Distribution

λ Taking |In(SNR)| yields an exponential distribution in ratios around unity.


λ The CPD for LHO and LLO is:

 $P(|\ln(SNR)|) = 1 - \exp(-0.726479 |\ln(SNR)|)$

LIGO-G0900403-v2

Combined Figure of Merit

Practical Application

λ Real detection delays with uncertainty

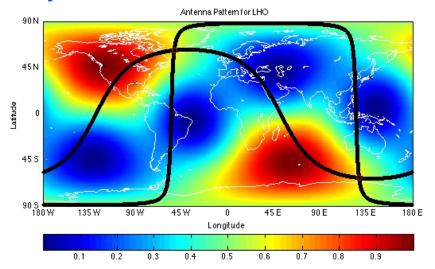
» If a part of the range of timing uncertainty (given a SNR) is inside bounds, identify the event within the bounds. Measurement probabilities including polarized waves are unaffected by timing errors.

λ Signal strength uncertainties need to be estimated

» If a part of the range of signal strength (within error bars) is inside bounds, identify the event within the bounds; return probability ranges for polarized waves.

λ Using non-identical detectors

» This investigation assumes that the measured event strengths are comparable between detectors. Manipulations of parameters (applying noise profiles, etc.) must be done prior to (outside of) this likelihood estimation.



Generalization to 3+ Detectors

- λ Using 3+ detectors diminishes the importance of event strength consideration.
 - » Timings isolate two sky locations well; event strength suggests a single location

λ This work is easily modified to determine source

location(s):

LIGO-G0900403-v2

Summary

- λ The figure of merit has been determined for all combinations of LIGO and VIRGO/GEO/TAMA.
- λ The results of this analysis produces a yes/maybe answer regarding the physicality of the event.
 - » If the answer is maybe, the probability measure indicates "how maybe" (the higher the probability, the more likely the event is physical).
- λ Generalization to 3+ detectors is dominated by the physicality of the detection delays.
- λ This analysis can also be applied for source localization based on detection delays only.