
TwoSpect: an all-sky search for continuous gravitational waves from neutron stars in binary systems

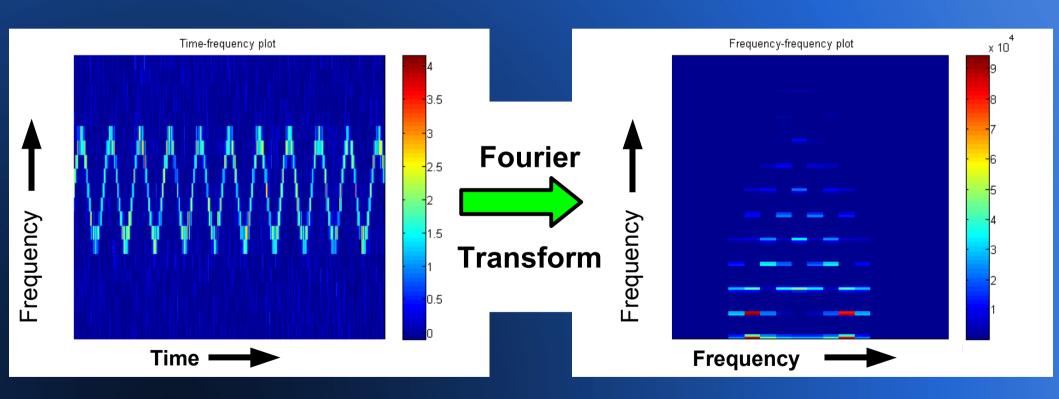
Evan Goetz, Keith Riles University of Michigan

American Physical Society, April 2009 meeting

Motivation

Credit: M. Kramer

- Significant fraction of neutron stars are located in binary systems
- Accretion onto NS and other perturbative processes of the NS can drive gravitational radiation
- Current all-sky gravitational wave search algorithms are designed for isolated NS
- Additional binary orbital parameters requires an efficient, new algorithm in order to be computationally feasible


Search strategy

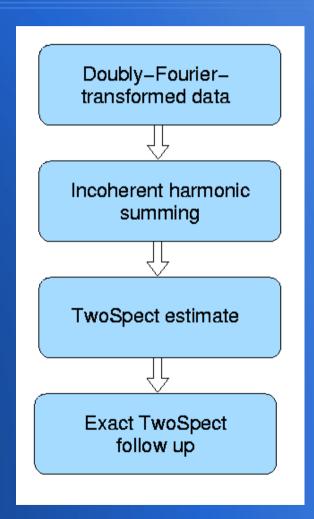
- Fourier transform short segments of data (~few to 30 minutes)
- Align the spectra, Fourier transform after mean subtraction for each band
- Fundamental + higher harmonics of the FM signal occur at frequencies corresponding to the period of the binary orbit, determined by binary system
- Use hierarchical TwoSpect algorithm to detect potential GW signals

Search strategy

First Fourier transform:

Second Fourier transform:

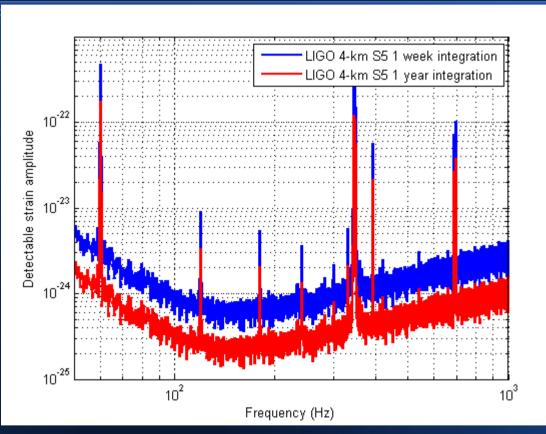
Optimal TwoSpect statistic


- Use weights from a template to match against the doubly-Fourier-transformed data
- Weights are determined by source signal frequency, signal modulation depth, and modulation frequency
- Purpose of the weights is to identify and quantify the "hot" pixels
- The optimal TwoSpect statistic Twice FFTed data

$$R = \frac{\sum_{n=0}^{N-1} \epsilon_n (x_n - \langle s_n \rangle)}{\sum_{n=0}^{N-1} \epsilon_n^2} \text{Noise subtracted}$$

Algorithm pipeline

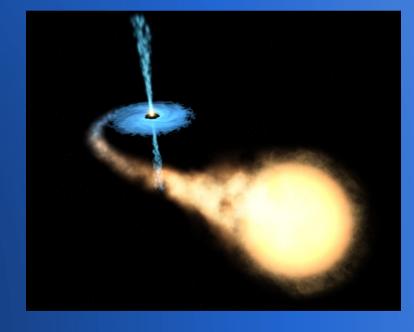
- The double-Fourier transform is computed after corrections for the Earth's orbital and spin motions
- Increasing sensitivity but increasing computation cost at each stage
- Incoherent harmonic summing algorithm threshold applied to columns
- Candidates are followed up using approximate weights for the TwoSpect R statistic
- Survivors are subjected to a threshold test using an exact template to determine R



TwoSpect search sensitivity

- Determine a false alarm rate threshold of R for a set of weights by 10,000 trials of random, white, Gaussian noise $(<s_i>=0, \sigma=1)$
- Determine efficiency by injecting signals of various amplitudes with noise
- Scale amplitude value to the strain amplitude detectable,
 h, using Parseval's Theorem and the detector strain noise
- Search sensitivity is dependent on strain spectral noise density, observation time, SFT coherence time, and signal modulation depth

TwoSpect search sensitivity



- Amplitude scaled for comparison with an initial LIGO detector noise curve
- Single template, no amplitude modulation,1 year observation time with FFT coherence time of 1000 s yields maximum sensitivity near 150 Hz of ~2x10⁻²⁵

 In the final pipeline we expect the large number of templates and the antenna pattern corrections to degrade the sensitivity by an order of magnitude

Conclusions

- TwoSpect provides:
 - Reasonable computational scaling
 - Astrophysically interesting upper limits
 - Accessibility to new region of parameter space
- Expect to begin full-scale testing and implementation within the next few months on real LIGO data with a search beginning a few months later

