Diagnostic Breadboard Instruction Manual LIGO-T0900133-v2

Patrick Kwee (patrick.kwee@aei.mpg.de)

November 17, 2009

Contents

1 Introduction 3
1.1 Definitions and Acronyms 3
2 Installation 4
3 Interface 8
3.1 Local interface 8
3.2 Remote interface 16
4 Long-term adjustments 16
5 Calibration 19
5.1 RPD calibration 19
5.1.1 TF from TIA output to board.rpd.ac signal 19
5.1.2 TF from TIA output to board.rpd.rf signal 20
5.2 PMC calibration 20
5.2.1 Calibration of hv.pmc.mon 20
5.2.2 TF from hv.pmc.pztmon to frequency 22
5.2.3 Loop TF 22
5.3 PZT1, PZT2 calibration 22
5.3.1 DC calibration of ctrl1.x.out 23
5.3.2 TF from ctrl1.x.out to relative alignment 23
5.3.3 Loop TF 24
6 General Procedures 24
6.1 Manual input beam alignment 24
6.2 PMC lock 25
6.3 Alignment locks 25
6.4 Modematching optimization 26
7 Relative Intensity Noise 26
7.1 Measurement 27
7.2 Calibration and Presentation 27
8 Relative Intensity Noise in RF Band 27
8.1 Measurement 28
8.2 Calibration and Presentation 28
9 Frequency Noise 29
9.1 Measurement 29
9.2 Calibration and Presentation 30
10 Pointing 30
10.1 Measurement 31
10.2 Calibration and Presentation 31
11 Beam Quality 32
11.1 Measurement 33
11.2 Calibration and Presentation 33
A Example Calibration 34
B Example Measurements 43

1 Introduction

This instruction manual describes how to use the Diagnostic Breadboard (DBB) for diagnostic laser beam measurements. The local interface and the remote interface are described and step by step instructions for performing and calibrating the measurements are provided. Reference measurements are given for comparisons.

Single frequency, linear polarized laser beams at a wavelength of 1064 nm with a high ($>50 \%$) TEM00 content can be analyzed with this breadboard. The relative intensity noise between 1 Hz and 100 kHz and between 1 MHz and 100 MHz , the frequency noise between 1 Hz and 100 kHz , the pointing between 1 Hz and 100 kHz and the beam quality of the incoming beam can be measured.

1.1 Definitions and Acronyms

AA autoalignment / alignment loops
CCD charge-coupled device
DBB diagnostic breadboard
DBID diagnostic breadboard serial number
DWS differential wavefront sensing
FRQ frequency noise measurement
FSR free spectral range
HV high voltage
Lag Laguerre Gaussian mode
LSD linear spectral density
MSC modescan measurement
PMC pre-mode-cleaner
PNT1X pointing measurement 1X
PNT1Y pointing measurement 1Y
PNT2X pointing measurement 2X
PNT2Y pointing measurement 2Y
PZT piezo-electric transducer
QPD quadrant photodiode
RF radio frequency
RIN relative intensity noise
RINRF relative intensity noise at radio frequencies
RPD RIN photodiode
TEM transversal electro magnetic mode, Hermite Gaussian mode
TF transfer function
TIA trans-impedance amplifier
TPD photodiode in transmission of PMC

2 Installation

Read the whole section before starting the installation of the $D B B$

The breadboard has a size of roughly $610 \mathrm{~mm} \times 500 \mathrm{~mm}$. You might need some mirrors to do the rough alignment to the breadboard, a beam power attenuator and a polarization turning component. The electronics consists of a 6 HE crate and two power supplies. One power supply is a 3 HE crate, the other power supply is in a table top case. The cables between the breadboard and the electronic crate have a length of 3 m .

The breadboard must be mounted on an optical table with five bases. Holes are provided in the breadboard, such that you can screw the breadboard from the top to imperial and metric optical tables with bases between the table and the breadboard. These holes are marked by blue circles in figure 3. The beam height is 65 mm above the breadboard and the breadboard is 20 mm thick. Choose appropriate bases to adapt the breadboard to your beam height. Five bases for a total beam height of 100 mm are delivered with the breadboard. They are screwed to the breadboard near component BS1.

Mount the breadboard by starting with the hole near the end of the input coupling rail and then choose the fitting hole for each of the remaining four hole pairs.

The following components are probably necessary for operating the DBB.

- Two mode matching lenses for ML1 and ML2. The focal lengths depend on the input beam. The lenses should be mounted in a mount with an outer diameter of 25 mm . They have to fit into the mount OH40-D25 from Owis (http://www.owis-staufen.de).
- CCD Monitor
- 75Ω BNC cable for the CCD Monitor
- Standard laboratory equipment, e.g oscilloscope, function generator, multimeter, ...

The input beam must be coupled into the breadboard along the input coupling rail. It must pass both iris diaphragms. The rough alignment of the beam should be made in front of the breadboard. The fine alignment to the PMC can be done with the mirror M1 and M2. The beam should have a power of 135 mW , at least between 120 mW and 150 mW , in p-polarization (horizontal).

The two lenses ML1 and ML2 on the input coupling rail can be used for modematching the beam to the PMC. You will need to have a beam waist of 189 um radius in the middle between the PZT mirrors. This location has an optical way distance of 804 mm from the breadboard input. Change the focal length and the position of the two lenses to match the input beam to the PMC. See the sticker on the PMC tank or figure 1 for reference.

Make all electrical connections between the breadboard, the crate and the power supplies - except the connection between the hv amplifier electronic module and the breadboard. A schematic is shown in figure 2. Now turn on the power supplies and use the potentiometers ctrl1.x.ofs, ctrl1.y.ofs, ctrl1.pmc.ofs, ctrl2.x.ofs and ctrl2.y.ofs to set all five high voltage signals to 0 V . Use the five monitor signals at the hv module to check this. Now connect the hv module

Figure 1: Modematching reference
with the breadboard and use the mentioned potentiometers to slowly increase the voltage to 150 V in about 10 seconds. This procedure is recommended after long storage of the PZTs by the manufacturer and should be repeated if the DBB is not used for a couple of weeks. In general, connect or disconnect the hv amplifier electronic module and the breadboard only if all five high voltage signals are at 0 V .

The following components are user maintainable:

- I1 and I2: open/close, slide position
- ML1 and ML2: lens, slide position
- M1 and M2: alignment
- BS2 and M9: alignment
- TPD: offset potentiometer

Never try to adjust PZT1, PZT2, L1 or BS1! If the position or alignment of these components are changed, the whole breadboard has to be rebuild component by component!

Have a look at section 4 for the adjustments which have to be made after installing the DBB.

Breadboard size	$610 \mathrm{~mm} \times 500 \mathrm{~mm}$
Input power	$135 \mathrm{~mW}(120 \mathrm{~mW} \ldots 150 \mathrm{~mW})$
Input polarization	p-polarization (horizontal)
Beam height above optical table	$\geq 85 \mathrm{~mm}$
Beam height above breadboard	65 mm
Breadboard thickness	20 mm
Waist radius	189 um
Waist position	804 mm downstream of breadboard input
Possible lens positions	$60 \mathrm{~mm} \ldots 440 \mathrm{~mm}$ downstream of breadboard input

Table 1: Quick installation reference

Figure 2: Cabling reference

Figure 3: Breadboard schematic

3 Interface

The DBB can be operated in two independent modes: a local and a remote mode. A digital signal at the bus of the electronic crate determines the operation mode. A yellow LED labeled with 'rmt' at the fronts of the electronic modules indicate, that this electronic module is operating in remote mode.

Both modes are completely independent, which means for example that signals which are injected using the local interface cannot change the behavior in remote operation or the other way around.

Most signals are available through both interfaces, but there are exceptions.
A simplified schematic of the whole electronics is shown in figure 4. More detailed schematics of the electronic modules are contained in the construction manual.

The following two sections describe the local and the remote interface. The step by step instructions in later sections use the connector, indicator and control names of the local interface for describing the procedures.

3.1 Local interface

The local interface to the DBB consists of five front plates of the electronic modules in the crate, one connector panel at the breadboard and an offset adjustment potentiometer at the case of the photodiode TPD.

The connector names and the voltage ranges, where applicable, are described in the figures 5, $6,7,8,9$ and 10 for the electronic modules and the connector panel. Each connector, indicator or control has a unique name, which are used in the step by step instructions for performing the measurements. If a signal is available also as remote signal, then the name of the remote signal is mentioned as well (upper case signal names).

Figure 4: Simplified schematic of the whole electronics. The names of the local interface are used for the connectors, indicators and controls. (It is advisable to print this page or better only the schematic above at least on a A 3 sheet)

Connector	Range	Type	Description
hv.led. 15 v hv.led.150v hv.led.rmt			Indicates a working $\pm 15 \mathrm{~V}$ power supply Indicates a working +150 V power supply Indicates remote operation mode
hv.pmc.in hv.pmc.scanmode hv.pmc.tfin hv.pmc.mon hv.pmc.pztmon	$\begin{gathered} -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ \\ -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ 0 \mathrm{~V} \ldots 10 \mathrm{~V} \\ -15 \mathrm{~V} \ldots-15 \mathrm{~V} \end{gathered}$	in in out out	Optional input for HV amplifier for PMC PZT. Input must be activated first with switch on PCB. Setting mode for scanning or locking the PMC Signal is added to HV amplifier input for PMC PZT $1 / 15$ of output voltage for PMC PZT Output voltage for PMC PZT filtered by special TF
hv.pzt1.inx hv.pzt1.monx hv.pzt1.iny hv.pzt1.mony	$\begin{array}{r} -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ 0 \mathrm{~V} \ldots 10 \mathrm{~V} \\ -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ 0 \mathrm{~V} \ldots 10 \mathrm{~V} \end{array}$	in out in out	Optional input for HV amplifier for PZT1-X. Input must be activated first with switch on PCB. $1 / 15$ of output voltage for PZT1-X Optional input for HV amplifier for PZT1-Y. Input must be activated first with switch on PCB. $1 / 15$ of output voltage for PZT1-Y
hv.pzt2.inx hv.pzt2.monx hv.pzt2.iny hv.pzt2.mony	$\begin{array}{r} -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ 0 \mathrm{~V} \ldots 10 \mathrm{~V} \\ -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ 0 \mathrm{~V} \ldots 10 \mathrm{~V} \end{array}$	in out in out	Optional input for HV amplifier for PZT2-X. Input must be activated first with switch on PCB. $1 / 15$ of output voltage for PZT2-X Optional input for HV amplifier for PZT2-Y. Input must be activated first with switch on PCB. $1 / 15$ of output voltage for PZT2-Y
hv.out.pmc hv.out.pzt1 hv.out.pzt2 hv.led.interlock	$0 \mathrm{~V} \ldots 150 \mathrm{~V}$ $0 \mathrm{~V} \ldots 150 \mathrm{~V}$ $0 \mathrm{~V} \ldots 150 \mathrm{~V}$	$\begin{aligned} & \text { out } \\ & \text { out } \\ & \text { out } \end{aligned}$	Output voltage for PMC PZT Output voltage for PZT1 Output voltage for PZT2 Indicates an interlock due to overtemperature

Figure 5: HV Amplifier local interface description.

Connector	Range	Type	Description
demod.led. 5 v demod.led. 15 v demod.led.rmt			Indicates a working $\pm 5 \mathrm{~V}$ power supply Indicates a working $\pm 15 \mathrm{~V}$ power supply Indicates remote operation mode
demod.phase demod.lomon demod.modoff demod.modout	$\begin{aligned} & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ & -15 \mathrm{~V} \ldots 15 \mathrm{~V} \end{aligned}$	out, 50Ω out	Modulation phase. Roughly between 0° and 270°, nonlinear. Local oscillator Turn local oscillator on or off Phase shifted local oscillator for PMC PZT modulation
demod.qpd1.qx demod.qpd1.qy demod.qpd1.qs	$\begin{aligned} & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \end{aligned}$	out out out	Power difference between left and right half of QPD1 Power difference between top and bottom half of QPD1 Power sum on QPD1
demod.qpd2.qx demod.qpd2.qy demod.qpd2.qs	$\begin{aligned} & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \end{aligned}$	out out out	Power difference between left and right half of QPD2 Power difference between top and bottom half of QPD2 Power sum on QPD2
demod.qpd1.dx demod.qpd1.dy demod.qpd1.ds	$\begin{aligned} & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \end{aligned}$	out out out	Demodulated difference between left and right half of QPD1 Demodulated difference between top and bottom half of QPD1 Demodulated sum signal of QPD1
demod.qpd2.dx demod.qpd2.dy demod.qpd2.ds	$\begin{aligned} & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \\ & -10 \mathrm{~V} \ldots 10 \mathrm{~V} \end{aligned}$	out out out	Demodulated difference between left and right half of QPD2 Demodulated difference between top and bottom half of QPD2 Demodulated sum signal of QPD2
demod.qpd1.dc demod.qpd1.ac	$\begin{gathered} -10 \mathrm{~V} \ldots 0 \mathrm{~V} \\ -10 \mathrm{~V} \ldots 10 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	Quadrant signals of QPD1 Quadrant signals of QPD1, AC coupled and amplified
demod.qpd2.dc demod.qpd2.ac	$\begin{gathered} \hline-10 \mathrm{~V} \ldots 0 \mathrm{~V} \\ -10 \mathrm{~V} \ldots .10 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	Quadrant signals of QPD2 Quadrant signals of QPD2, AC coupled and amplified

Figure 6: Demodulator local interface description.

Connector	Range	Type	Description
ctrl1.led.5v			Indicates a working $\pm 5 \mathrm{~V}$ power supply
ctrl1.led. 15 v			Indicates a working $\pm 15 \mathrm{~V}$ power supply
ctrl1.led.rmt			Indicates remote operation mode
ctrl1.x.gain			Gain for PZT1-X loop, adjustment bandwidth $<1 \mathrm{~Hz}$
ctrl1.x.in	$-10 \mathrm{~V} . . .10 \mathrm{~V}$	in	Optional input for error signal of PZT1-X loop. Input must be activated first with switch on PCB.
ctrl1.x.tfin	$-10 \mathrm{~V} \ldots .10 \mathrm{~V}$	in	Signal is added to error signal of PZT1-X loop
ctrl1.x.ofs			Offset added to control signal of PZT1-X loop
ctrl1.x.out	-15 V... 15 V	out	Control signal of PZT1-X loop
ctrl1.x.on			Tri-state switch for state of PZT1-X loop
ctrl1.x.tfmon	-15V... 15 V	out	Error signal of PZT1-X loop, after tfin addition
ctrl1.y.gain			Gain for PZT1/2-Y loop, adjustment bandwidth < 1Hz
ctrl1.y.in	$-10 \mathrm{~V} . . .10 \mathrm{~V}$	in	Optional input for error signal of PZT1-Y loop. Input must be activated first with switch on PCB.
ctrl1.y.tfin	$-10 \mathrm{~V} \ldots .10 \mathrm{~V}$	in	Signal is added to error signal of PZT1-Y loop
ctrl1.y.ofs			Offset added to control signal of PZT1-Y loop
ctrl1.y.out	-15 V... 15 V	out	Control signal of PZT1-Y loop
ctrll.y.on			Tri-state switch for state of PZT1-Y loop
ctrl1.y.tfmon	-15V... 15 V	out	Error signal of PZT1-Y loop, after tfin addition
ctrl1.pmc.gain			Gain for PMC PZT loop, adjustment bandwidth < 1Hz
ctrl1.pmc.in	$-10 \mathrm{~V} \ldots . .10 \mathrm{~V}$	in	Optional input for error signal of PMC PZT loop. Input must be activated first with switch on PCB.
ctrl1.pmc.tfin	$-10 \mathrm{~V} \ldots .10 \mathrm{~V}$	in	Signal is added to error signal of PMC PZT loop
ctrl1.pmc.ofs			Offset added to control signal of PMC PZT loop
ctrl1.pmc.out	-15 V... 15 V	out	Control signal of PMC PZT loop
ctrl1.pmc.on			Tri-state switch for state of PMC PZT loop
ctrl1.pmc.tfmon	-15 V... 15 V	out	Error signal of PMC PZT loop, after tfin addition

Figure 7: Controller 1 local interface description.

Connector	Range	Type	Description
ctrl2.led.5v			Indicates a working $\pm 5 \mathrm{~V}$ power supply
$\mathrm{ctrl2} \text {.led. } 15 \mathrm{v}$			Indicates a working $\pm 15 \mathrm{~V}$ power supply
ctrl2.led.rmt			Indicates remote operation mode
ctrl2.x.gain			Gain for PZT2-X loop, adjustment bandwidth < 1Hz
ctrl2.x.in	$-10 \mathrm{~V} \ldots 10 \mathrm{~V}$	in	Optional input for error signal of PZT2-X loop. Input must be activated first with switch on PCB.
ctrl2.x.tfin	$-10 \mathrm{~V} \ldots 10 \mathrm{~V}$	in	Signal is added to error signal of PZT2-X loop
ctrl2.x.ofs			Offset added to control signal of PZT2-X loop
ctrl2.x.out	$-15 \mathrm{~V} \ldots 15 \mathrm{~V}$	out	Control signal of PZT2-X loop
ctrl2.x.on			Tri-state switch for state of PZT2-X loop
ctrl2.x.tfmon	-15V...15V	out	Error signal of PZT2-X loop, after tfin addition
ctrl2.y.gain			Gain for PZT2-Y loop, adjustment bandwidth $<1 \mathrm{~Hz}$
ctrl2.y.in	$-10 \mathrm{~V} \ldots 10 \mathrm{~V}$	in	Optional input for error signal of PZT2-Y loop. Input must be activated first with switch on PCB.
ctrl2.y.tfin	$-10 \mathrm{~V} \ldots .10 \mathrm{~V}$	in	Signal is added to error signal of PZT2-Y loop
ctrl2.y.ofs			Offset added to control signal of PZT2-Y loop
ctrl2.y.out	$-15 \mathrm{~V} \ldots . .15 \mathrm{~V}$	out	Control signal of PZT2-Y loop
ctrl2.y.on			Tri-state switch for state of PZT2-Y loop
ctrl2.y.tfmon	$-15 \mathrm{~V} \ldots 15 \mathrm{~V}$	out	Error signal of PZT2-Y loop, after tfin addition

Figure 8: Controller 2 local interface description.

Connector	Range	Type	Description
misc.led.5v misc.led.15v misc.led.rmt			Indicates a working $\pm 5 \mathrm{~V}$ power supply Indicates a working $\pm 15 \mathrm{~V}$ power supply Indicates remote operation mode
misc.shutter.open misc.led.shutter.closed misc.led.shutter.interlock			Switch for opening or closing the shutter Indicates a closed shutter Indicates an interlock due to too much input power
misc.lens.pos1 misc.lens.pos2 misc.lens.on			Position of lens ML1, if lens movement is turned on Position of lens ML2, if lens movement is turned on Turn lens movement on or off
misc.rpd.dc misc.rpd.ac	$-13 \mathrm{~V} \ldots 13 \mathrm{~V}$	in	Input for RPD.DC signal input for RPD.AC signal
misc.shutter.out misc.lens.out	$0 \mathrm{~V} \ldots 10 \mathrm{~V}$	in/out	Multiple input and output signals for the shutter Output signals and power supply for lens servos

Figure 9: Misc local interface description.

Connector	Range	Type	Description
board.qpd1.dc	$-10 \mathrm{~V} \ldots .0 \mathrm{~V}$	out	Quadrant signals of QPD1
board.qpd1.ac	$-10 \mathrm{~V} \ldots 10 \mathrm{~V}$	out	Quadrant signals of QPD1, AC coupled and amplified
board.qpd2.dc	$-10 \mathrm{~V} \ldots .0 \mathrm{~V}$	out	Quadrant signals of QPD2
board.qpd2.ac	$-10 \mathrm{~V} \ldots 10 \mathrm{~V}$	out	Quadrant signals of QPD2, AC coupled and amplified
board.pzt1	$0 \mathrm{~V} \ldots .150 \mathrm{~V}$	in	PZT1 signals
board.pzt2	$0 \mathrm{~V} \ldots .150 \mathrm{~V}$	in	PZT2 signals
board.lens		in	Signals and power supply for lens servos
board.tpd. 0 db	$-12 \mathrm{~V} \ldots . \mathrm{V}$	out	Signal of TPD, $1 \mathrm{k} \Omega$ transimpedance amplifier
board.tpd. 40 db	$0 \mathrm{~V} \ldots 12 \mathrm{~V}$	out	Amplified TPD signal
board.tpd.80db	$-12 \mathrm{~V} \ldots .0 \mathrm{~V}$	out	Amplified TPD signal
board.rpd.dc	$-12 \mathrm{~V} \ldots .0 \mathrm{~V}$	out	Signal of RPD, 200Ω transimpedance amplifier board.rpd.ac board.rpd.rf
$-12 \mathrm{~V} \ldots 12 \mathrm{~V}$	out	Amplified and AC coupled signal of RPD	
board.ccd	$-12 \mathrm{~V} \ldots 12 \mathrm{~V}$	out, 50Ω	Amplified and AC coupled signal of RPD
board.power		out	Video signal of CCD camera
board.pmc.mod	$-15 \mathrm{~V} \ldots 15 \mathrm{~V}$	in	Power supply for the photodiodes
board.pmc.hv	$0 \mathrm{~V} \ldots 150 \mathrm{~V}$	in	Input for PMC PZT modulation
board.shutter		input for PMC PZT HV signal	

Figure 10: Breadboard interface description.

3.2 Remote interface

The electronic modules can be controlled by signals on the analog and digital bus of the electronic crate. Furthermore all measurements can be performed with the bus signals and three further photodiode signals, except the relative intensity noise between 1 MHz and 100 MHz , which requires an RF spectrum analyzer. So it is possible to control the DBB and perform measurements using only the bus and the mentioned three photodiode signals.

The electronic crate has room for two more electronic modules, which could do the actual interfacing between the bus and for example a computer. This interface module has to inject 14 analog signals (possibly 5 analog signals more, if you want to add offset voltages at the error points of the five control loops) and has to measure 21 analog signals. 18 digital signals must be set by the interface module and 1 digital signal must be read.

The analog bus is described in table 2 and the digital bus is described in table 3. The TFIN and TFMON analog signals are multiplexed to save some lines on the analog bus. The digital signals TFSEL0, TFSEL1 and TFSEL2 are used to select the desired signal (see table 4). Beyond the signals of these two buses, the interface modules has to measure the analog photodiode signals at the connectors board.tpd. 0 db , board.tpd. 40 db , board.tpd. 80 db . These three signals are due to space problems not available on the analog bus.ses, the interface modules has to measure the analog photodiode signals at the connectors board.tpd.0db, board.tpd.40db, board.tpd. 80 db . These three signals are due to space problems not available on the analog bus.

Every analog signal which is injected to the bus, is measured with a pseudo-differential amplifier by the appropriate module to avoid ground loops. The digital signals have to be referenced to the analog ground of the electronic crate. The interface module should use (pseudo-) differential amplifiers to measure the signals to avoid ground loops.

The demodulation phase can be controlled with the PHASE signal. The range is roughly from 0° to 270°, in a nonlinear way. The gain signals are coded as $G(u)=10 \mathrm{~V} / u$.

4 Long-term adjustments

From time to time it might be necessary to make some adjustments to compensate for long-term drifts of mounts and electronic offsets. After installing the DBB for the first time or after moving it to a new location, these adjustments should be always performed. The best time to perform these adjustments is, when the whole DBB has reached the thermal equilibrium. The following sections describe which adjustments might be necessary. Perform the adjustments in the given order, since there are some dependencies.

QPD1 alignment

Align the incoming beam to the PMC using M1 and M2 (s. Sec. 6.1). Stop scanning the PMC and make the PMC off-resonant. Now measure the demod.qpd1.qx and demod.qpd1.qy signals and use BS2 to align the beam to QPD1. Both signals should be as close as possible to 0 V .

Wire	Name	Front connector	Range	BW	Source	Sink	Description
2-1	PHASE	demod.phase	$0 \mathrm{~V} \ldots .10 \mathrm{~V}$	0.3 Hz	*	demod	Demodulation Phase
3-1	CTRL1-GAINX	ctrl1.x.gain	$0.1 \mathrm{~V} \ldots . .10 \mathrm{~V}$	0.3 Hz	*	ctrl1	Gain
4-1	CTRL1-GAINY	ctrl1.y.gain	$0.1 \mathrm{~V} \ldots . .10 \mathrm{~V}$	0.3 Hz	*	ctrl1	Gain
5-1	CTRL2-GAINX	ctrl2.x.gain	0.1 V . . 10 V	0.3 Hz	*	ctrl2	Gain
6-1	CTRL2-GAINY	ctr12.y.gain	$0.1 \mathrm{~V} \ldots . .10 \mathrm{~V}$	0.3 Hz	*	ctrl2	Gain
7-1	CTRL0-GAIN	ctrl1.pmc.gain	$0.1 \mathrm{~V} \ldots .10 \mathrm{~V}$	0.3 Hz	*	ctrl1	Gain
8-1	CTRL1-OFSX		-12 V... 12 V	100 kHz	*	ctrl1	Ctrl Offset
9-1	CTRL1-OFSY		-12 V.. . 12 V	100 kHz	*	ctrl1	Ctrl Offset
10-1	CTRL2-OFSX		-12 V. . 12 V	100 kHz	*	ctrl2	Ctrl Offset
11-1	CTRL2-OFSY		-12 V. . 12 V	100 kHz	*	ctrl2	Ctrl Offset
12-1	CTRL0-OFS		-12 V. . . 12 V	100 kHz	*	ctrl1	Ctrl Offset
14-13	CTRL1-ADDX	ctrl1.x.ofs	-10 V... 10 V	100 kHz	*	ctrl1	Ctrl Add
16-15	CTRL1-ADDY	ctrl1.y.ofs	-10 V.. . 10 V	100 kHz	*	ctrl1	Ctrl Add
18-17	CTRL2-ADDX	ctrl2.x.ofs	-10 V.. . 10 V	100 kHz	*	ctrl2	Ctrl Add
20-19	CTRL2-ADDY	ctrl2.y.ofs	-10 V... 10 V	100 kHz	*	ctrl2	Ctrl Add
22-21	CTRL0-ADD	ctrl1.pmc.ofs	-10 V...10 V	100 kHz	*	ctrl1	Ctrl Add
24-23	TFIN	(several)	-12 V... 12 V	100 kHz	*	ctrl1/2,hv	TF Input
26-25	QPD1-QX	demod.qpd1.qx	-15 V... 15 V	10 kHz	demod	*	DC Delta X Signal
27-25	QPD1-QY	demod.qpd1.qy	-15 V. . . 15 V	10 kHz	demod	*	DC Delta Y Signal
28-25	QPD1-QS	demod.qpd1.qs	$0 \mathrm{~V} . . .15 \mathrm{~V}$	10 kHz	demod	*	DC Sumsignal
30-29	QPD2-QX	demod.qpd2.qx	-15 V. . . 15 V	10 kHz	demod	*	DC Delta X Signal
31-29	QPD2-QY	demod.qpd2.qy	-15 V. . . 15 V	10 kHz	demod	*	DC Delta Y Signal
32-29	QPD2-QS	demod.qpd2.qs	$0 \mathrm{~V} . . .15 \mathrm{~V}$	10 kHz	demod	*	DC Sumsignal
34-33	QPD1-DX	demod.qpd1.dx	-15 V...15V	100 kHz	demod	ctrl1	Demodulated Delta X Signal
36-35	QPD1-DY	demod.qpd1.dy	-15 V... 15 V	100 kHz	demod	ctrl1	Demodulated Delta Y Signal
38-37	QPD-DS	demod.qpd1.ds	-15 V. . . 15 V	100 kHz	demod	ctrl1	Demodulated Sumsignal
40-39	QPD2-DX	demod.qpd2.dx	-15 V. . . 15 V	100 kHz	demod	ctrl2	Demodulated Delta X Signal
42-41	QPD2-DY	demod.qpd2.dy	-15 V... 15 V	100 kHz	demod	ctrl2	Demodulated Delta Y Signal
44-43	CTRL1-CTRLX	ctrl1.x.out	-15 V... 15 V	100 kHz	ctrl1	hv	Control Signal
46-45	CTRL1-CTRLY	ctrl1.y.out	-15 V. . . 15 V	100 kHz	ctrl1	hv	Control Signal
48-47	CTRL2-CTRLX	ctrl2.x.out	-15 V.. . 15 V	100 kHz	ctrl2	hv	Control Signal
50-49	CTRL2-CTRLY	ctrl2.y.out	-15 V. . . 15 V	100 kHz	ctrl2	hv	Control Signal
52-51	CTRL0-CTRL	ctrl1.pmc.out	-15 V.. . 15 V	100 kHz	ctrl1	hv	Control Signal
54-53	PZTMON	hv.pmc.pztmon	-15 V.. . 15 V	100 kHz	hv	*	PZT Monitor
56-55	TFMON	(several)	-15 V.. . 15 V	100 kHz	ctrl1/2,hv	*	TF Monitor
58-57	HVMON	hv.pmc.mon	$0 \mathrm{~V} . . .10 \mathrm{~V}$	100 kHz	hv	*	HV Monitor
60-59	RIN-DC	misc.rpd.dc.out	-15 V. . 0 V	100 kHz	misc	*	RIN PD DC
61-59	RIN-AC	misc.rpd.ac.out	-15 V. . 15 V	100 kHz	misc	*	RIN PD AC
63-62	LENS1	misc.lens.pos1	-10 V... 10 V	50 Hz	*	misc	Lens1 Position
64-62	LENS2	misc.lens.pos2	$-10 \mathrm{~V} \ldots . .10 \mathrm{~V}$	50 Hz	*	misc	Lens2 Position

Table 2: Analog bus, 64 wire flatband cable. The wires are given in the format (signal wire)(ground wire). BW = bandwidth.

Wire	Name	Front connector	Source	Sink	Low (0V)	High (5V)
13	D0		$*$	$*$	Spare	Spare
14	LENS-LATCH	misc.lens.on	$*$	misc	move	stay
15	SHUTTER-CLOSED	misc.led.shutter.closed	misc	$*$	Shutter Open	Shutter Closed
16	SHUTTER-OPEN	misc.shutter.open	$*$	misc	Close Shutter	Open Shutter
17	CTRL1-ONY	ctrl1.y.on	$*$	ctrl1	Ctrl Loop Open	Ctrl Loop Closed
18	RMTCTRL	$* . l e d . r m t ~$	$*$	(all)	Electronics in local control	Electronics in remote control
19	CTRL2-ONX	ctrl2.x.on	$*$	ctrl2	Ctrl Loop Open	Ctrl Loop Closed
20	MODOFF	demod.modoff	$*$	demod	1 MHz PZT Modulation	No RingPZT Modulation
21	CTRL2-ONY	ctrl2.y.on	$*$	ctrl2	Ctrl Loop Open	Ctrl Loop Closed
22	SCANMODE	hv.pmc.scanmode	$*$	hv	Lock Mode	Scan Mode
23	CTRL0-INT	ctrl1.pmc.on	$*$	ctrl1	Integrator Off	Integrator On
24	CTRL1-INTX	ctrl1.x.on	$*$	ctrl1	Integrator Off	Integrator On
25	CTRL0-ON	ctrl1.pmc.on	$*$	ctrl1	Ctrl Loop Open	Ctrl Loop Closed
26	CTRL1-INTY	ctrl1.y.on	$*$	ctrl1	Integrator Off	Integrator On
27	CTRL2-INTY	ctr12.y.on	$*$	ctrl2	Integrator Off	Integrator On
28	CTRL2-INTX	ctrl2.x.on	$*$	ctrl2	Integrator Off	Integrator On
29	CTRL1-ONX	ctrl1.x.on	$*$	ctrl1	Ctrl Loop Open	Ctrl Loop Closed
30	TFSEL0		$*$	ctrl1/2,hv		
31	TFSEL1		$*$	ctrl1/2,hv		
32	TFSEL2					

Table 3: Digital bus. All signals are referenced to ground at wires 7 and 8.

TFSEL	2	1	0
disabled	Low	Low	Low
ctrl1.x	Low	Low	High
ctrl1.y	Low	High	Low
ctrl1.pmc	Low	High	High
ctr12.x	High	Low	High
ctr12.y	High	High	Low
hv.pmc	High	High	High

Table 4: TFSEL coding.

QPD2 alignment

If you have not already aligned the incoming beam to the PMC using M1 and M2 and the Modescan technique, do it now. Stop scanning the PMC and make the PMC off-resonant. Now measure the demod.qpd2.qx and demod.qpd2.qy signals and use only M9 to align the beam to QPD2. Both signals should be as close as possible to 0 V .

TPD offset

Close the shutter and measure the offset at board.tpd80db. Use a screw driver to adjust the offset at the case of TPD to below 2 mV . Make this adjustment only after TPD has warmed up for at least 15 minutes.

5 Calibration

The following sections describe how to calibrate the DBB. These calibrations are long-term stable and hence need only be done once after building a DBB. Example calibrations are given in the appendix for comparison. For compatibility the calibration data should be stored in simple text files. The filenames and the format are described in the following sections. Table 5 shows an overview of the different calibration files.

If the DBB is controlled by RTLinux not all calibrations need to be performed. The calibrations which are only necessary for the analog controller case are marked.

Transfer functions should be saved in the following format: Three columns of numbers, decimal point is '.', line comments starts with ' $\#$ ' and the first column is the Fourier frequency in Hz , the second the magnitude in dB and the third the phase in degree. See an example below.

```
# [ Freq, Hz ] [ Mag, dB ] [ Phase, deg ]
    1.02329 140.364 122.174
    1.04713 140.139 122.224
    1.07152 139.872 122.754
```


5.1 RPD calibration

5.1.1 TF from TIA output to board.rpd.ac signal

1. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V
2. Modulate the input power of the DBB or use a photodiode tester (which is assumed in the following).
3. Measure the TF from the laser diode monitor to the rpd.ac signal from 1 Hz to 100 kHz .
4. With the same setup and light power, measure the TF from the laser diode monitor to the rpd.dc signal between 1 Hz and 10 kHz

Filename	Content	Needed for
date.dat	Date of calibration	
dbid.dat	Serial number of DBB	
pmc-cali.dat	DC calibration of hv.pmc.mon in MHz/V	FRQ
pmc-cali.py	Calibration polynom of hv.pmc.mon in FSR/V for ramp signal	MSC
pmc-fsr.dat	FSR in MHz	MSC
pnt1x-cali.dat	DC calibration of ctrl1.x.out in eps/V	PNT1X
pnt1y-cali.dat	DC calibration of ctrl1.y.out in eps/V	PNT1Y
pnt2x-cali.dat	DC calibration of ctrl2.x.out in eps/V	PNT2X
pnt2y-cali.dat	DC calibration of ctrl2.y.out in eps/V	PNT2Y
tf-hv-pztmon.dat	TF from hv.pmc.pztmon to PMC resonance frequency in Hz/V	FRQ
tf-pmc-loop.dat	Loop TF of PMC length control loop	FRQ
tf-pnt1x.dat	TF from ctrl1.x.out to relative alignment in eps/V	PNT1X
tf-pnt1x-loop.dat	Loop TF of 1X alignment control loop	PNT1X
tf-pnt1y.dat	TF from ctrl1.y.out to relative alignment in eps/V	PNT1Y
tf-pnt1y-loop.dat	Loop TF of 1Y alignment control loop	PNT1Y
tf-pnt2x.dat	TF from ctrl2.x.out to relative alignment in eps/V	PNT2X
tf-pnt2x-loop.dat	Loop TF of 2X alignment control loop	PNT2X
tf-pnt2y.dat	TF from ctrl2.y.out to relative alignment in eps/V	PNT2Y
tf-pnt2y-loop.dat	Loop TF of 2Y alignment control loop	PNT2Y
tf-rpd-ac.dat	TF from RPD TIA output to board.rpd.ac	RIN
tf-rpd-rf.dat	TF from RPD TIA output to board.rpd.rf	RINRF

Table 5: Calibration files.
5. Calculate the TF from rpd.dc to rpd.ac. If you cannot measure below 100 Hz , extrapolate the rpd.ac TF down to 1 Hz and add a highpass at 10 Hz to the TF
6. Save the TF as $t f-r p d-a c \cdot d a t$

5.1.2 TF from TIA output to board.rpd.rf signal

1. Use a photodiode tester with a bandwidth of at least 100 MHz
2. Measure the TF from the laser diode monitor to the rpd.rf signal from 1 MHz to 100 MHz
3. With the same setup and light power, measure the TF from the laser diode monitor to the rpd.dc signal between 1 kHz and 10 kHz
4. Extrapolate the flat TF of the rpd.dc signal to 100 MHz and divide the TF of $r p d . r f$ by this extrapolated TF.
5. If you were using a network analyzer with 50Ω input impedance (which you should use at these frequencies), then divide the TF by 2 , since the rpd.dc is a low impedance output and the rpd.rf is an 50Ω output. This TF is now the TF from TIA output to the board.rpd.rf signal.
6. Save the TF as $t f-r p d-r f . d a t$

5.2 PMC calibration

5.2.1 Calibration of hv.pmc.mon

1. Adjust the input power, such that board.rpd. $d c$ is between 9 V and 11 V
2. Turn all five control loops off
3. Switch hv.pmc.scanmode to scanmode
4. Switch demod.modoff to off
5. Adjust ctrll.pmc.ofs such that ctrll.pmc.out is 0 V .
6. Optimize the modematching with $M L_{1}$ and $M L_{2}$ and the alignment with M_{1} and M_{2} The fundamental mode must have at least twice the power of any higher order mode.
7. Inject a ramp signal with 10 V amplitude, a frequency of 1 Hz and an offset of 0 V into $h v . p m c . t f i n$. Keep in mind that hv.pmc.tfin is a high impedance input.
8. Modulate the laser frequency with a ramp signal of about 1 GHz (corresponds to about 100 mV amplitude at NPRO temperature modulation input) with a frequency of 1 mHz . Make sure there is no mode hopping when modulating the frequency.
9. Simultaneous sample the signals hv.pmc.mon and board.tpd.0db at $250 \mathrm{kSamples} / \mathrm{s}$ for 1000 s DC coupled.
10. Determine for all 1000 rising ramps the $h v . p m c . m o n$ signal where a fundamental mode in the board.tpd.Odb signal occurs. (see pztfindpeaks.py)
11. Calculate a function $f(u)$, which returns the frequency tuning of the resonator in units of free spectral ranges for the given $h v . p m c$.mon signal. An overdetermined linear equation system can be solved for a polynom with the condition that the difference between this polynom applied to hv.pmc.mon signals of neighboring fundamental mode is one. (see pztfit.py)
12. Save this function as python function in pmc-cali.py. For example:
```
def f(x):
    return 0 + 0.446964*x**1 + 0.0131752*x**2 +
    -0.00142824*x**3 + 0.000154563*x**4 + - 6.54091e-006*x**5
```

13. Calculate the FSR of the PMC. The round trip length of the PMC is $L=420 \mathrm{~mm}$ and hence the FSR $\nu=c / L=714 \mathrm{MHz}$. Save the number in Hz in pmc-fsr. dat.
14. Calculate the average slope of $\mathrm{f}(\mathrm{u})$ and multiply it by the FSR in MHz. This is now the DC calibration of hv.pmc.mon in MHz/V (see pztfit.py). Save the number in pmc-cali.dat.

5.2.2 TF from hv.pmc.pztmon to frequency

1. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V
2. Lock the PMC to the fundamental mode
3. Measure the TF from hv.pmc.mon to demod.qpdl.ds from 0.5 Hz to 10 Hz . Inject the source signal at ctrll.pmc.tfin. This TF should look like a lowpass with a corner frequency around 3 Hz
4. Use the TF at low frequencies around 1 Hz at the flatband of the lowpass to calibrate the error signal demod.qpdl.ds. The DC calibration of the hv.pmc.mon signal is available in pmc-cali.dat.
5. Measure the TF from hv.pmc.pztmon to demod.qpdl.ds from 1 Hz to 100 kHz . Inject the source signal at ctrll.pmc.tfin.
6. Calibrate hv.pmc.pztmon signal with the now known calibration of demod.qpdl.ds. The units of this TF should be Hz / V.
7. Save the TF as $t f-h v-p z t m o n$. dat

5.2.3 Loop TF

This calibration is only necessary for the analog controller case.

1. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V
2. Lock the PMC to the fundamental mode
3. Adjust the control loop gain at ctrll.pmc.gain
4. Measure the TF from demod.qpdl.ds to ctrll.pmc.out from 1 Hz to 100 kHz . Inject the source signal at hv.pmc.tfin.
5. Measure the TF from ctrll.pmc.out to demod.qpdl.ds from 1 Hz to 100 kHz . Inject the source signal at ctrll.pmc.tfin.
6. Multiply both TFs to get the loop TF. Since the loop TF has a very high gain at low frequencies, it is difficult to measure the TF in one go.
7. Save the TF as $t f-p m c-l o o p . d a t$ and double check the sign/phase of the loop TF.

5.3 PZT1, PZT2 calibration

The following instructions describe how to calibrate the 1X alignment loop. For calibrating the $1 \mathrm{Y}, 2 \mathrm{X}$ and 2 Y loop you simply have to exchange the signal names in the instructions.

5.3.1 DC calibration of ctrl1.x.out

1. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V
2. Turn all five control loops off
3. Switch hv.pmc.scanmode to scanmode
4. Adjust ctrll.pmc.ofs such that ctrll.pmc.out is 0 V .
5. Adjust ctrll.x.ofs such that ctrll.x.out is 0 V .
6. Inject a ramp signal with 10 V amplitude, a frequency of 1 Hz and an offset of 0 V into hv.pmc.tfin.
7. Use a scope to measure board.tpd.Odb and trigger on the injected ramp signal
8. Optimize the alignment to the PMC with M1 and M2
9. Measure the power ratio TEM10/TEM00 mode dependent on ctrll.x.out. Adjust for example ctrl1.x.ofs such that ctrl1.x. out changes between -3 V and 3 V in 250 mV steps. You should get an almost quadratic dependence.
10. Fit the measured ratio to the model $r(\epsilon)$ to determine the DC calibration of ctrll.x.out in eps/V.

$$
r(\epsilon)=\epsilon^{2}
$$

11. Save the number as pnt1x-cali.dat

5.3.2 TF from ctrl1.x.out to relative alignment

This calibration is only necessary for the analog controller case.

1. Adjust the input power, such that board.rpd. $d c$ is between 9 V and 11 V
2. Lock the PMC to the fundamental mode
3. Turn on the alignment loops
4. Measure the TF from ctrll.x.out to demod.qpd1.dx from 1 Hz to 100 kHz . Inject the source signal at ctrll.x.tfin. This TF should look like a lowpass with a corner frequency around 100 Hz
5. Use the TF at low frequencies at the flatband of the lowpass to calibrate ctrll.x.out. The DC calibration of the ctrll.x.out signal is saved in pnt1x-cali.dat. This TF should have the units eps/V.
6. Save the TF as $t f-p n t 1 x$.dat

5.3.3 Loop TF

This calibration is only necessary for the analog controller case.

1. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V
2. Lock the PMC to the fundamental mode
3. Turn on the alignment loops
4. Measure the TF from ctrll.x.tfmon to demod.qpdl.dx from 1 Hz to 100 kHz . Inject the source signal at ctrll.x.tfin. This TF is the loop TF of the alignment control loop.
5. Check the sign of the flat transfer function from demod.qpdl.dx to ctrll.x.tfmon. There is no special point for source signal injection, use the existing noise to determine the sign.
6. Save the TF as tf-pnt1x-loop. dat and double check the sign/phase of the loop TF.

6 General Procedures

6.1 Manual input beam alignment

The following steps describe how to align a laser beam to the DBB.

1. Remove ML1 and ML2 from the rail
2. Use mirrors in front of the DBB to align the beam such, that it passes both almost closed iris diaphragms I1 and I2 on the rail
3. Calculate a modematching to the PMC
4. Eventually change the lenses of ML1 and ML2 to do the modematching
5. Mount ML1 and ML2 onto the rail at the calculated positions
6. Use the potentiometers ctrl1.x.ofs, ctrl1.y.ofs, ctrl1.pmc.ofs, ctrl2.x.ofs and ctrl2.y.ofs to set the high voltage roughly to 75 V (5 V at the high voltage monitors).
7. Set hv.pmc.scanmode to scan mode.
8. Scan the PMC by injecting a ramp signal (e.g. 10V, 12Hz) at hv.pmc.tfin
9. You should now see higher modes with the CCD camera. Use M1 and M2 to improve the alignment using the CCD camera signal
10. Use a scope to measure board.tpd. 0 db and trigger on the injected ramp signal
11. Use M1 and M2 to reduce the power of the TEM10 and TEM01 modes
12. Stop scanning the PMC by disconnecting the ramp signal.

6.2 PMC lock

The following steps describe how to lock one PMC resonance to the input beam. Figure 11 shows an overview of the different control loops.

Figure 11: Control loops

1. Align the input beam to the PMC (s. Sec. 6.1)
2. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V .
3. Set hv.pmc.scanmode to lock mode.
4. Verify that the demod.modoff is turned on and no ramp signal is injected at hv.pmc.tfin.
5. Adjust ctrll.pmc.ofs until a TEM00 mode is resonant. Use the CCD camera, board.tpd. $0 d b$ or demod.qpdl.qs to check for the resonance condition.
6. Use ctrll.pmc.on to turn on the control loop and the same switch to turn the integrator as well on.
7. Adjust the gain of the control loop with ctrll.pmc.gain, such that the demod.qpdl.ds is not oscillating. Be aware of the low $(<1 \mathrm{~Hz})$ adjustment bandwidth of ctrll.pmc.gain.

6.3 Alignment locks

The following steps describe how to lock the alignment loops. Figure 11 shows an overview of the different control loops.

1. Lock the PMC (s. Sec. 6.2)
2. Turn on all alignment loops with ctrl1.x.on, ctrl1.y.on, ctrl2.x.on and ctrl2.y.on. Turn the integrators as well on.
3. Adjust the gains of the control loops with ctrl1.x.gain, ctrll.y.gain, ctrl2.x.gain and ctrl2.y.gain. The error signals demod.qpd1.dx, demod.qpd1.dy, demod.qpd2.dx, demod.qpd2.dy must not oscillate.
4. To optimize the range of PZT1 and PZT2, use a scope to monitor the signals ctrll.x.out, ctrll.y.out, ctrl2.x.out and ctrl2.y.out. Use M1 and M2 to adjust the input beam alignment until all four monitored signals are $\approx 0 \mathrm{~V}(<1 \mathrm{~V})$.

6.4 Modematching optimization

The following steps describe how to optimize the modematching to the PMC.

1. Lock the alignment loops (s. Sec. 6.3)
2. Measure the signal demod.qpd1.qs or demod.qpd2.qs. This is the reflected light power, which must be minimized.
3. While optimizing, monitor the signals ctrl1.x.out, ctrll.y.out, ctrl2.x.out and ctrl2.y.out. These signals might saturate. If this is the case, use M1 and M2 to realign the input beam to the PMC. For the largest dynamic range these signals should be near 0 V .
4. Either move ML1 and ML2 along the rail manually or use misc.lens.pos1 and misc.lens.pos 2 to move the lenses. You have to turn the lens movement on using misc.lens.on beforehand. After optimizing the lens positions turn the lens movement off since otherwise the servo motors might overheat.
5. To find the global minimum of demod.qpd1.qs both lenses must be moved in general. Optimizing each lens on its own is often not sufficient.
6. To finally check, if the modematching is optimized, set ctrll.x.out, ctrll.y.out, ctrl2.x.out and ctrl2.y.out to 0 V and then turn all control loops off and use ctrll.pmc.ofs to make the TEM20 and TEM02 modes resonant. Use the CCD camera to check the actual mode structure. Lag 10 mode fractions can be completely matched to the PMC. However Lag02 mode fractions cannot be matched to PMC using only two spherical lenses. So the modematching is optimized when only a Lag02 mode is visible.

7 Relative Intensity Noise

The power of the input beam is measured with the photodiode RPD. The photocurrent is converted to a voltage with a TIA and some signal conditioning is done inside of RPD. The AC output has a gain of about 40 dB and a high pass at around 10 Hz .

7.1 Measurement

Preparations

1. Align the input beam to the PMC
2. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V .

Sampling

1. Simultaneous sample the board.rpd.dc and board.rpd.ac signals at $250 \mathrm{kSamples} / \mathrm{s}$. Measure these signals with differential inputs. Use DC coupling for board.rpd.dc and keep in mind, that this signal may be larger than 10 V . Use AC coupling for board.rpd.ac.

7.2 Calibration and Presentation

Long-term power fluctuations

1. Downsample the board.rpd.dc signal to 1 Sample/s
2. Calculate the average signal, the min/max signal and the standard deviation of the signal
3. Plot the normalized signal for the measurement duration over the time

Noise in measurement band

1. Calculate the LSD of the board.rpd.ac signal from 1 Hz to 100 kHz
2. Divide by AC coupling TF
3. Divide by the TF $t f-r p d-a c \cdot d a t$
4. Normalize the LSD by the average signal $U_{\text {avg }}$ obtained from the board.rpd.dc measurement to get RIN
5. Plot this LSD
6. Include the shotnoise level, which should be around $2.5 \cdot 10^{-9} / \sqrt{H z}$

$$
N_{s n}=\sqrt{2 \cdot 1.602 \cdot 10^{-19} \mathrm{C} \cdot 200 \Omega / U_{a v g}}
$$

8 Relative Intensity Noise in RF Band

The power of the input beam is measured with the photodiode RPD. The photocurrent is converted to a voltage with a TIA and some signal conditioning is done inside of RPD. The RF output has a gain of about 34 dB and a high pass at around 1 MHz . This output is a 50Ω output.

8.1 Measurement

Preparations

1. Align the input beam to the PMC
2. Turn the PMC modulation at demod.modoff off.
3. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V .

Sampling

1. Connect the board.rpd.rf signal to an spectrum analyzer with 50Ω input impedance.
2. Measure the LSD (not the spectrum!) of the signal in three frequency bands: 1 MHz to $10 \mathrm{MHz}, 10 \mathrm{MHz}$ to 30 MHz and 30 MHz to 100 MHz . Use about 32 averages.
3. Measure the DC value of the board.rpd.dc signal

Electronic noise

To correct for electronic noise of the photodiode, do the following measurement. It is advisable to correct for electronic noise for measurements above about 60 MHz .

1. Close the shutter
2. Connect the board.rpd.rf signal to the spectrum analyser with 50Ω input impedance.
3. Measure the LSD of the signal in three frequency bands: 1 MHz to $10 \mathrm{MHz}, 10 \mathrm{MHz}$ to 30 MHz and 30 MHz to 100 MHz . Use about 32 averages.

8.2 Calibration and Presentation

Steps 3 to 5 are optional.

1. Merge the LSD of the three frequency bands
2. Divide this LSD by the transfer function $t f-r p d-r f$. dat
3. Merge the LSD of the three frequency bands of the electronic noise (opt.)
4. Divide this electronic noise LSD by the transfer function $t f-r p d-r f$. dat (opt.)
5. Subtract the electronic noise from the merged signal LSD (opt.)
6. Divide this LSD by the DC value $U_{\text {avg }}$ of the board.rpd.dc signal
7. Plot this LSD
8. Include the shot noise level, which should be around $2.5 \cdot 10^{-9} / \sqrt{H z}$

$$
N_{s n}=\sqrt{2 \cdot 1.602 \cdot 10^{-19} \mathrm{C} \cdot 200 \Omega / U_{a v g}}
$$

9 Frequency Noise

The frequency noise of the input beam is measured with the PMC. To be able to measure the frequency noise, the round-trip length of the PMC must be more stable than the laser frequency. One resonance of the PMC is locked to the laser frequency by changing the length of the PMC with a PZT. This control loop has a bandwidth of about 1 kHz . The deviation between the resonance frequency of the PMC and the laser frequency can be measured at demod.qpdl.ds. This signal contains the frequency fluctuations of the laser above unity gain. The signal at the PZT can measured at hv.pmc.pztmon. The signal hv.pmc.pztmon is AC coupled and reflects frequency fluctuations below the unity gain frequency. For long-term frequency fluctuations you have to use the DC coupled signal hv.pmc.mon.

9.1 Measurement

Preparations

1. Align the input beam to the PMC
2. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V .
3. Lock the PMC including the AA, to reduce pointing effects
4. For the rest of the measurement do not adjust the gain of the PMC length control loop or the input power.

Sampling

1. Simultaneous sample the three signals demod.qpdl.ds, hv.pmc.pz.tmon and hv.pmc.mon at $250 \mathrm{kSamples} / \mathrm{s}$. Use AC coupling and differential inputs to measure the signals demod.qpdl.ds, hv.pmc.pztmon. Use DC coupling and differential inputs for hv.pmc.hvmon.

Short-term calibration measurements

1. Measure the TF from hv.pmc.pztmon to demod.qpdl.ds from 100 Hz to 1 kHz . Inject the source signal at $h v . p m c . t f i n$. This TF is used to calibrate the errorsignal. It is enough to note the level of the TF, since it should be a flat TF.
2. Measure the TF from demod.qpd1.ds to ctrll.pmc.out around 500 Hz to 600 Hz at one Fourier frequency. Inject the source signal at hv.pmc.tfin. This TF is used to calculate the loop TF.
3. Measure the TF from ctrll.pmc.out to demod.qpdl.ds at the same Fourier frequency. Inject the source signal at ctrll.pmc.tfin. This TF is used to calculate the loop TF.

9.2 Calibration and Presentation

Long-term frequency fluctuations

1. Downsample the $h v . p m c . h v m o n$ signal to 1 Sample/s
2. Calibrate the signal by $\mathrm{pmc}-\mathrm{cali}$. dat to frequency fluctuations in MHz .
3. Calculate the average signal
4. Subtract the average from the signal
5. Calculate the min / \max signal
6. Calculate the standard deviation of the signal
7. Plot the signal for the measurement duration over the time

Noise in measurement band

1. Calculate the LSD of the demod.qpdl.ds and hv.pmc.pztmon signal from 1 Hz to 100 kHz
2. Divide by AC coupling TF
3. Multiply the inverse of TF $t f-h v-p z t m o n$. dat with the measured TF from hv.pmc.pztmon to demod.qpdl.ds. This is now a TF from frequency fluctuations to the demod.qpd1.ds signal. Since this TF is flat, it is enough to evaluate this formula at one Fourier frequency.
4. Calibrate the LSD of demod.qpdl.ds to frequency fluctuations by dividing by the TF from frequency fluctuations to the demod.qpdl.ds signal.
5. Calibrate the LSD of hv.pmc.pztmon to frequency fluctuations by multiplying by the TF tf-hv-pztmon.dat.
6. Calculate the loop TF of the PMC length control loop by adjusting the p-gain of $t f-\mathrm{pmc}$-loop. dat , such that it matches the measured loop TF at the one Fourier frequency.
7. Merge the calibrated signals demod.qpdl.ds and hv.pmc.pztmon to one LSD of frequency fluctuations with the loop TF.
8. Plot this LSD

10 Pointing

Pointing is measured in respect to the fundamental mode of the PMC. One resonance of the PMC is locked to the input beam. The beam which is reflected from the PMC is a superposition of a phase modulated beam from the inside of the PMC and the input beam. The quadrant photodiodes QPD1 and QPD2 are used to measure the beat between both beams to determine the relative alignment between them (DWS). The PZTs PZT1 and PZT2 are used to align the beam
to the PMC using four control loops $1 \mathrm{X}, 1 \mathrm{Y}, 2 \mathrm{X}$ and 2 Y . The bandwidth of the control loops is about 100 Hz . Pointing fluctuations below unity gain can be measured using the control signals ctrll.x.out, ctrll.y.out, ctrl2.x.out and ctrl2.y.out. Above unity gain the alignment deviation can be measured using the error signals demod.qpdl.dx, demod.qpdl.dy, demod.qpd2.dx and demod.qpd2.dy.

10.1 Measurement

Preparations

1. Align the input beam to the PMC
2. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V .
3. Lock the PMC including the AA
4. For the rest of the measurement do not adjust the gain of the alignment control loops or the input power.

Sampling

1. Simultaneous sample the two signals demod.qpdl.dx and ctrll.x.out at $250 \mathrm{kSamples} / \mathrm{s}$. Use AC coupling and differential inputs for both signals. Additionally sample the signal ctrll.x.out using DC coupling.

Repeat these steps for the alignment loops $2 \mathrm{X}, 1 \mathrm{Y}$ and 2 Y .

Short-term calibration measurements

1. Measure the TF from ctrl1.x.out to demod.qpdl. $d x$ from 1 Hz to 30 Hz . Inject the source signal at ctrll.x.tfin. This TF is used to calibrate the errorsignal. It is enough to note the level of the TF, since it should be a flat TF.
2. Measure the TF from ctrll.x.tfmon to demod.qpdl.dx around 500 Hz to 600 Hz at one Fourier frequency. Inject the source signal at ctrll.x.tfin. This TF is the loop TF of the alignment control loop.

Repeat these steps for the alignment loops $2 \mathrm{X}, 1 \mathrm{Y}$ and 2 Y .

10.2 Calibration and Presentation

Long-term pointing fluctuations

1. Downsample the ctrl1.x.out signal, which was DC coupled, to 1 Sample/s
2. Calibrate the signal by pnt1x-cali. dat to relative alignment fluctuations
3. Calculate the average signal
4. Subtract the average from the signal
5. Calculate the min/max signal
6. Calculate the standard deviation of the signal
7. Plot the signal for the measurement duration over the time

Noise in measurement band

1. Calculate the LSD of the demod.qpdl.dx and ctrll.x.out signal from 1 Hz to 100 kHz
2. Divide by AC coupling TF
3. Multiply the inverse of TF $\mathrm{tf}-\mathrm{pnt1x}$. dat with the measured TF from ctrl1.x.out to demod.qpd1.dx. This is now a TF from tilt fluctuations to the demod.qpdl.dx signal. Since this TF is flat below about 30 Hz , it is enough to evaluate this formula at one Fourier frequency.
4. Calibrate the LSD of demod.qpd1.dx to tilt fluctuations by dividing by the TF from tilt fluctuations to the demod.qpdl.dx signal.
5. Calibrate the LSD of ctrl1.x.out to tilt fluctuations by multiplying by the TF tf f -pnt 1 x . dat
6. The TF from ctrll.x.tfmon to demod.qpdl.dx is the loop TF, except for the sign. Adjust the p-gain of $t f-p n t 1 x-l o o p$. dat to match the magnitude of the measured loop TF. This TF is now the loop TF.
7. Merge the calibrated signals demod.qpdl.dx and ctrll.x.out to one LSD of pointing fluctuations with the loop TF.
8. Plot this LSD

Repeat these steps for the alignment loops $2 \mathrm{X}, 1 \mathrm{Y}$ and 2 Y .

11 Beam Quality

The beam quality of the input beam is measured by scanning the PMC over one FSR. By scanning the PMC and measuring the transmitted power with the photodiode TPD, the input beam can be decomposed into TEM modes. The photocurrent is converted to a voltage using a TIA. The power in the TEM00 modes compared to the total power is used to characterize the beam quality. The photodiode TPD contains two low offset DC coupled 40 dB amplifiers for signal conditioning. TPD generates the signals board.tpd.0db, board.tpd. 40 db and board.tpd. 80 db .

11.1 Measurement

Preparations

1. Optimize the modematching and the alignment to the PMC
2. Adjust the input power, such that board.rpd.dc is between 9 V and 11 V .
3. Turn all five control loops off
4. Switch the hv.pmc.scanmode to scanmode.
5. Turn the demod.modoff off.
6. Adjust ctrll.pmc.ofs such that ctrll.pmc.out is 0 V .
7. Inject a ramp signal with 10 V amplitude, a frequency of 1 Hz and an offset of 0 V into $h v . p m c . t f i n$. Keep in mind, that $h v . p m c . t f i n$ is a high impedance input.

Sampling

1. Simultaneous sample all four signals hv.pmc.mon, board.tpd.0db, board.tpd. 40 db and board.tpd. 80 db at $250 \mathrm{kSamples} / \mathrm{s}$. Use DC coupling. For each second sampled, one modescan will be extracted. Sample at least two seconds.

11.2 Calibration and Presentation

For each sampled rising ramp do the following:

1. Merge the signals board.tpd. 0 db, board.tpd. 40 db and board.tpd. 80 db into one signal with increased dynamic range and normalize the signal to be between 0 and 1.
2. Fit the ramp of the hv.pmc.mon signal to a linear function.
3. Use pmc-cali.py to calibrate this linear function to frequency tuning of the resonator.
4. Trim the signal to the middle FSR.
5. Determine the power of each higher mode and identify the mode by its frequency tuning. If phase or amplitude sidebands are present on the input beam, identify them by the sideband frequency ($\mathrm{pmc}-\mathrm{fsr} . \mathrm{dat}$) and the power ratio.
6. Sum all modes to determine the overall power and the calculate the power fraction in higher modes compared to the fundamental mode.
7. Plot the merged and frequency-tuning calibrated signal with a fit to the fundamental mode and a fit to the overall signal. Use a logarithmic y axis.

A Example Calibration

The following pages contain the calibration data for one DBB. Section 5 explains in detail how to measure this calibration data.

Advanced LIGO PSL DBB Calibration Data

March 13, 2007

Serial number (DBID): DBID3000

Date of calibration: Fri Mar 9 12:32:51 2007

Serial number (DBID)
Date of calibration
hv.pmc.mon calibration
FSR
PMC PZT nonlinearity (hv.pmc.mon)

Table 1: Calibration values.

Figure 1: Transfer function from board.rpd.dc to board.rpd.ac (tf-rpd-ac.dat).

Figure 2: Transfer function from board.rpd.dc to board.rpd.rf (tf-rpd-rf.dat).

Figure 3: Transfer function from hv.pmc.pztmon to PMC resonance frequency (tf-hv-pztmon.dat).

Figure 4: Loop transfer function of PMC length control loop (tf-pmc-loop. dat).

Figure 5: Transfer function from ctrl1.x.out to relative alignment to the PMC (tf-pnt1x.dat).

Figure 6: Loop transfer function of alignment loop 1X (tf-pnt1x-loop. dat).

Figure 7: Transfer function from ctrl1.y.out to relative alignment to the PMC (tf-pnt1y.dat).

Figure 8: Loop transfer function of alignment loop 1Y (tf-pnt1y-loop. dat).

Figure 9: Transfer function from ctrl2.x.out to relative alignment to the PMC (tf-pnt $2 x . d a t$).

Figure 10: Loop transfer function of alignment loop 2 X (tf -pnt 2 x -loop. dat).

Figure 11: Transfer function from ctrl2.y.out to relative alignment to the PMC (tf-pnt2y.dat).

Figure 12: Loop transfer function of alignment loop 2Y (tf-pnt2y-loop. dat).

B Example Measurements

The following pages show example measurements. The output beam of an NPRO was characterized. Sections 7 to 11 explain in detail how these measurements were performed.

Relative Intensity Noise

Notes:
Advanced LIGO NPRO, Spare \#2, I=2300mA, Noise Eater, Flowbox 2\%

Relative Intensity Noise RF

Notes:
Advanced LIGO NPRO, Spare \#2, I=2300mA, Noise Eater, Flowbox 2\%

Frequency Noise

PZT position: 43.3 \% . . 58.4 \%
Notes:
Advanced LIGO NPRO, Spare \#2, I=2300mA, Noise Eater, Flowbox 2\%

Pointing 1X

Measurement duration:	$1800 \mathrm{~s}=30 \mathrm{~min}$
Measurement start:	Tue Mar $13 \mathrm{13:38:02} 2007$
Uncalibrated error signal:	$0.121764 \mathrm{~V} \mathrm{rms},-1.12335 \mathrm{~V} \ldots 0.946045 \mathrm{~V}$
Uncalibrated control signal:	$0.385374 \mathrm{~V} \mathrm{rms},-2.32971 \mathrm{~V} \ldots 1.97662 \mathrm{~V}$

PZT position: 53.4 \% . . 54.7 \%
Notes:
Advanced LIGO NPRO, Spare \#2, I=2300mA, Noise Eater, Flowbox 2\%

Pointing 1Y

Measurement duration:	$1800 \mathrm{~s}=30 \mathrm{~min}$ Tue Mar $13 \mathrm{14:46:37} 2007$ Measurement start:
Uncalibrated error signal:	$0.339363 \mathrm{~V} \mathrm{rms},-4.37744 \mathrm{~V} \ldots 4.27338 \mathrm{~V}$
Uncalibrated control signal:	$0.470664 \mathrm{~V} \mathrm{rms},-2.17712 \mathrm{~V} \ldots 3.45337 \mathrm{~V}$

PZT position: 49.7 \% . . 51.2 \%
Notes:
Advanced LIGO NPRO, Spare \#2, I=2300mA, Noise Eater, Flowbox 2\%

Pointing 2X

Measurement duration:	$1800 \mathrm{~s}=30 \mathrm{~min}$ Tue Mar $1315: 34: 522007$ Measurement start:
Uncalibrated error signal:	$0.0672226 \mathrm{~V} \mathrm{rms}-,1.02997 \mathrm{~V} \ldots 0.857849 \mathrm{~V}$
Uncalibrated control signal:	$0.259174 \mathrm{~V} \mathrm{rms},-1.35742 \mathrm{~V} \ldots 1.37085 \mathrm{~V}$

PZT position: 49.7 \% ... 50.5%

Notes:
Advanced LIGO NPRO, Spare \#2, I=2300mA, Noise Eater, Flowbox 2\%

Pointing 2Y

Measurement duration:	$1800 \mathrm{~s}=30 \mathrm{~min}$ Tue Mar $13 \mathrm{16}: 20: 412007$
Measurement start:	$0.541421 \mathrm{~V} \mathrm{rms},-6.28357 \mathrm{~V} \ldots 6.01929 \mathrm{~V}$
Uncalibrated error signal:	$0.389647 \mathrm{~V} \mathrm{rms},-2.51038 \mathrm{~V} \ldots 2.4176 \mathrm{~V}$
Uncalibrated control signal:	0.

PZT position: $49.4 \% \ldots 51 \%$
Notes:
Advanced LIGO NPRO, Spare \#2, I=2300mA, Noise Eater, Flowbox 2\%

Modescan

Number of scans:	200	Relative power of one sideband:	-1 ± 0
Measurement duration:	200 s	Significant modes:	57.35 ± 2.07786
Measurement start:	Tue Mar 13 17:18:57 2007	Average deviation:	-0.000385801 FSR
PD signal:	$0.000275423 \mathrm{~V} \ldots 8.28579 \mathrm{~V}$	Relative horizontal (X) misalignment:	0.0119504 ± 0.00482634
Samples per FSR:	23435.8 ± 23.5697	Relative vertical (Y) misalignment:	0.0115132 ± 0.0047008
Calibration deviation:	$0.17318 \% \pm 0.0177406 \%$	Relative mismodematching:	$0.0885816 \pm 0.000416498$
Finesse:	355.557 ± 0.215921	Roundtrip Gouy phase:	$0.151031 \mathrm{FSR} \pm 1.23381 \mathrm{e}-05 \mathrm{FSR}$
Higher mode count:	71.065 ± 1.09123		
Higher mode power:	$2.2834 \% \pm 0.177956 \%$		

Notes:

Advanced LIGO NPRO, Spare \#2, I=2300mA, Noise Eater, Flowbox 2\%

