
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-T080135-v10 LIGO July 20, 2020

aLIGO CDS

Real-time Code Generator (RCG V4.0)

Application Developer’s Guide

R. Bork

Distribution of this document:
LIGO Scientific Collaboration

This is an internal working note

of the LIGO Laboratory.

California Institute of Technology
LIGO Project – MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project – NW22-295

185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 1970

Mail Stop S9-02

Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory

P.O. Box 940
Livingston, LA 70754

Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

http://www.ligo.caltech.edu/

LIGO LIGO-T080135-v9

 2

Table of Contents

1 Introduction .. 4

2 Document Overview ... 4

3 References ... 4

4 RCG Overview ... 5
4.1 Code Development ... 5
4.2 Code Generator ... 7
4.3 Run-time Software ... 9

4.3.1 Real-Time .. 10
4.3.2 Non-Real-time ... 11

5 RCG Application Development ... 12
5.1 General Rules and Guidelines... 12
5.2 Code Compilation and Installation ... 14

5.2.1 Standard Compile and Install Using CDS RTS Package ... 14
5.2.2 Compile and Install Using RCG from GIT Repository ... 14

6 Running the RCG Application .. 15
6.1 Application Startup .. 15

6.1.1 Using rtcds command .. 15
6.1.2 Using systemctl command ... 15

6.2 Runtime Processes ... 15
6.2.1 Control Application Processes ... 15
6.2.2 DAQ Processes .. 16

6.3 Runtime Diagnostics .. 18
6.4 Additional Run Time Tools .. 18

7 RCG Software Parts Library ... 20
7.1 Top Level .. 20

7.1.1 cdsParameters .. 20
7.2 C Code .. 25

7.2.1 cdsFunctionCall .. 25
7.3 I/O Parts ... 27

7.3.1 ADC .. 28
7.3.2 ADC Selector .. 30
7.3.3 DAC Modules.. 31
7.3.4 cdsDio ... 33
7.3.5 cdsRio and cdsRio1 – ... 34
7.3.6 cdsIPCx_PCIE, cdsIPCx_RFM, and cdsIPCx_SHMEM ... 35
7.3.7 cdsCDO32 .. 37
7.3.8 cdsCDIO1616 and cdsDIO6464 ... 37

7.4 Simulink Parts .. 40
7.4.1 Unit Delay .. 41
7.4.2 Subsystem Part ... 42
7.4.3 MathFunction .. 43
7.4.4 In-line (math) function .. 46
7.4.5 From/Goto .. 52
7.4.6 Bus Creator / Bus Selector .. 53

LIGO LIGO-T080135-v9

 3

7.5 EPICS Parts ... 54
7.5.1 cdsEpicsOutput/cdsEpicsIn .. 55
7.5.3 EpicsInCtrl .. 58
7.5.5 cdsEpicsBinIn .. 59
7.5.6 cdsRemoteIntlk .. 60
7.5.7 cdsEzCaRead/cdsEzCaWrite .. 61
7.5.8 EPICS Momentary .. 62

7.6 Osc/Phase .. 63
7.6.1 cdsPhase .. 64
7.6.2 cdsWfsPhase .. 65
7.6.3 cdsOsc ... 65
7.6.4 cdsSatCount.. 67
7.6.5 cdsNoise ... 67

7.8 Filters ... 69
7.8.1 CDS Standard IIR Filter Module .. 70
7.8.2 IIR Filter Module with Control ... 78
7.8.3 IIR Filter Module with Control 2 ... 80
7.8.4 PolyPhase FIR Filter ... 84
7.8.5 Input Filter (Single Pole / Single Zero (SPSZ) with EPICS control) ... 84
7.8.6 RMS Filter.. 86
7.8.7 True RMS Filter .. 87
7.8.8 Test Point .. 88
7.8.9 Excitation .. 89

7.9 Matrix Parts ... 90
7.9.2 cdsMuxMatrix .. 91
7.9.4 cdsRampMuxMatrix ... 93
7.9.5 cdsFiltMuxMatrix ... 95
7.9.6 cdsBit2Word/cdsWord2Bit .. 96

7.11 WatchDogs ... 97
7.11.2 WD .. 98
7.11.3 WD2 .. 101
7.11.4 cdsDacKill .. 102
7.11.6 cdsDacKillIop ... 105
7.11.8 DacKillTimed .. 110

7.13 DAQ Parts ... 111
7.14 RT Links .. 112

7.14.1 GPS .. 113
7.14.2 ODC State Word .. 113
7.14.3 Model_Rate .. 113

LIGO LIGO-T080135-v9

 4

1 Introduction

For the development of real-time controls application software, the LIGO Control and Data Systems
(CDS) group has developed an automated real-time code generator (RCG). This RCG uses MATLAB
Simulink as a graphical data entry tool to define the desired control algorithms. The resulting
MATLAB .mdl file is then used by the RCG to produce software to run on an Advanced LIGO
(aLIGO) CDS front end control computer.

The software produced by the RCG includes:

• A real-time code thread, with integrated timing, data acquisition and diagnostics.

• Network interface software, using the Experimental Physics and Industrial Control System
(EPICS) software and EPICS Channel Access. This software provides a remote interface
into the real-time code.

2 Document Overview

This document describes the means to develop a user application using the RCG. It contains the
following sections:

• Reference Section (3): The RCG produces software which integrates with various other
components of CDS software. In addition, there are various files and services which must
be configured prior to code operation. These items are covered under separate
documentation, listed in the reference section.

• RCG Overview (4): Provides a brief description of the RCG, its components and resulting
code threads.

• Application Development (5): Provides the basics for developing an application using the
RCG.

• Software Execution (6): Describes how to start and stop the software application.

• RCG Software Parts Library (7): Describes the various components supported by the RCG.

3 References:

• LIGO T2000467: CDS RTS V4.0 Release Notes.

• LIGO T0900612 aLIGO CDS Design Overview https://dcc.ligo.org/LIGO-T0900612-v2 :
Provides an overview of the aLIGO CDS hardware and software designs, along with links to
more detailed documentation.

• LIGO T1000625 CDS Software Documentation https://dcc.ligo.org/LIGO-T1000625-x0:
Provides links to this and other CDS software documentation.

https://dcc.ligo.org/T2000467
https://dcc.ligo.org/LIGO-T0900612-v2
https://dcc.ligo.org/LIGO-T1000625-x0

LIGO LIGO-T080135-v9

 5

4 RCG Overview

The RCG uses MATLAB Simulink as a ‘drawing’ tool to allow real-time control applications to be
developed via a Graphical User Interface (GUI). A basic description of this process, the RCG itself,
and resulting application software is provided in the following subsections.

4.1 Software Installation

As of CDS Real-Time Software (RTS) releave V4.0, the RTS software is available as Linux packages
from the CDS advligoRTS gitlab site. See LIGO T2000467: CDS RTS V4.0 Release Notes for
installation, configuration and runtime information.

4.2 Code Development

Code development is done by graphically placing and connecting blocks in the MATLAB Simulink
editor. The ‘building blocks’ supported by the RCG are included in the CDS_PARTS.mdl file. The
contents of the present file are shown below, with further descriptions of the blocks listed in Section
7 RCG Software Parts Library.

Figure 1: CDS Parts Library

https://dcc.ligo.org/T2000467

LIGO LIGO-T080135-v9

 6

Parts from the CDS library are copied (drag and drop) to the user application window and then
connected to show processing/signal flow. A simple example is shown in the following figures, the
first of which is the “top” level, the second showing the detail of one of the top level subsystem parts.

This example shows:

• A cdsParameters: This block must exist in all models. It is used by the RCG in setting code
compile options and linking this application with various other components in a CDS
distributed system.

• Three, 32 channel ADC (Analog-to-Digital Converter; ADC_0, ADC_1, ADC_2).

• One of each of the three supported DAC module.

• Within the subsystem level, selection of ADC channels and connection to CDS standard IIR
filter modules.

This Simulink diagram is then saved to a user defined .mdl file, which is then processed by the RCG
to provide the final real-time and supporting software which run on a CDS front end computer.

Many examples of models built for aLIGO use can be found within the CDS SVN repository
(https://redoubt.ligo-wa.caltech.edu/websvn/) in the cds user apps area.

Figure 2: Example IOP Model - Top Level

https://redoubt.ligo-wa.caltech.edu/websvn/

LIGO LIGO-T080135-v9

 7

Figure 3: Example Model – Subsystem Level

4.3 Code Generator

The code generation process is shown in the following figure and the basic process is described

below.

1) Once the user application is complete, it is saved to the user .mdl file in a predefined CDS software

directory.

LIGO LIGO-T080135-v9

 8

2) The ‘make’ command is now invoked in the designated CDS build directory. This results in the

following actions:

a) A CDS Perl script (feCodeGen.pl) parses the user .mdl file and creates:

1) Real-time C source code for all of the parts in the user .mdl file, in the sequence

specified by the links between parts.

 2) A Makefile to compile the real-time C code.

3) A text file for use by a second Perl script to generate the EPICS code.

 4) An EPICS code Makefile.

5) A header file, common to both the real-time code and EPICS interface code, for

the communication of data between the two during run-time.

6) Reads/appends inter-process communications signals to an interferometer common

text file.

b) The compiler is invoked on the application C code file, which links in the standard CDS

developed C code modules, and produces a real-time executable.

c) The Perl script for EPICS code generation (fmseq.pl) is invoked, which:

1) Produces an EPICS database file.

2) Produces an executable code object, based on EPICS State Notation Language

(SNL). This code module provides communication between CDS workstations on the

CDS Ethernet and the real-time FE (Front End) code.

3) Produces basic EPICS MEDM (Motif Editor & Display Manager) screens.

4) An EPICS BURT (Back Up and Restore Tool) back-up file for use in saving EPICS

settings.

5) The header for the CDS standard filter module coefficient file.

6) A list of all test points, for use by the GDS (Global Diagnostic System) tools.

7) A basic DAQ (Data Acquisition) file.

8) A list of all EPICS channels for use by the EDCU (EPICS Data Collection Unit).

LIGO LIGO-T080135-v9

 9

Figure 4: Code Generation

4.4 Run-time Software

The primary software modules that get executed on the CDS FE computers are shown in the figure

below.

SimuLink.mdl

File

CDS_Parts.m

dl

File

CDS

Individual

Part Library

.mdl Files

Realtime C

Source

Code

Common

Header File

Epics .txt

File

EPICS

Makefile

Realtime

Makefile

Skeleton.db

Skeleton.st

Simulink

Graphical

Editor

feCodeGen.pl

Script

Realtime

I/O Library

Realtime

Controller

Software

Realtime

DAQ Library

fmseq.pl

Script

EPICS

SNL

Code

Compiler

Realtime

Executable

EPICS

.db File

EPICS

autoBurt

GDS.par

File

EPICS

Startup File

Basic

MEDM

Screens

Basic .ini

DAQ FIle

Basic

Filter FIle

Compiler

EPICS

Executable
EDCU

File

LIGO LIGO-T080135-v9

 10

The computer itself is a multi-CPU and/or multi-core machine. The operating system is presently

Debian 10 Linux, with a LIGO CDS custom patch for real-time applications. CDS applications are

spread among the various CPU cores:

o CPU core 0: Reserved for the Linux OS and non-realtime critical applications.

o CPU core 1: Reserved for a special case RCG model known as in Input/Output Processor

(IOP).

o CPU core 2 thru n: Real-time user applications built from the RCG to perform system control,

referred to here as a Control Application Model (CAM). Any core not reserved for a real-

time application is made available to the Linux OS to run non-realtime applications.

Figure 5: Run-time Software Overview

4.4.1 Real-Time

Each application built using the RCG from a Matlab model becomes a self-contained kernel module.
At run time, it is loaded onto the CPU core specified in the model. This code makes use of the Linux
OS facilities to load the code and allow the code to perform its necessary initialization. At that point,
the code takes full control of the CPU core and that core is removed from the Linux list of available
resources. This prevents that core from being interrupted and/or having other processes loaded by
Linux. Code scheduling in now entirely controlled by the special case IOP software.

4.4.1.1 IOP

The IOP task is essentially the real-time scheduler for the FE computer. It is triggered by the arrival
of data from the ADC modules, which are in turn slaved to the timing system (65536Hz clocks),
which is locked to the GPS. It is also the conduit for passing ADC and DAC data between the PCIe
modules and the user applications.

LIGO LIGO-T080135-v9

 11

Key functions of the IOP include:

• Initialization and setup all PCIe I/O devices.

• Timing control, including:
o Starting the clocks from the Timing receiver module in the I/O chassis such that

startup begins synchronous with the GPS 1PPS mark.
o Monitoring ADC data ready, caused by an ADC clock cycle, and initiating a real-time

code cycle. This information is passed on to the user applications to synchronously
trigger their code cycles.

• Synchronously reading ADC module data and passing data on to user applications.

• Synchronously writing data to DAC modules, data which is received from user applications.

• Providing real-time network and binary I/O module memory address information to user
applications, such that these applications may communicate directly with those devices.

4.4.1.2 User Application

User applications are those that perform actual control functions. There may be as many user
applications running on an FE computer as there are available cores (total cores – 2). Timing of these
processes is controlled by the IOP and all ADC/DAC data is passed via the IOP to ensure
synchronous read/write. The user applications may run at rates from 2K to 128K.

4.4.2 Non-Real-time

The ‘Non-Real-time’ CPU core(s) runs the following tasks:

• EPICS based network interface. This consists of several components:

o Custom EPICS main.c process. This process monitors EPICS setpoint values and

provides a number of reporting options. This monitoring is commonly referred to as

SDF.

o EPICS State Notation Language (SNL) sequencer software. This component is built

and compiled by the RCG for each application. This code is designed to communicate

data between the real-time application and the EPICS database records.

o EPICS Database Records: Produced by the RCG and loaded at runtime. This EPICS

database becomes the communication mechanism to various EPICS tools used in

operating the system, via EPICS Channel Access (ECA). These tools include such

items as MEDM, used to create and run operator interfaces.

• GDS Arbitrary Waveform Generator and Test Point Manager (awgtpman). For each real-time

application, a copy of awgtpman is started. This program allows for the injection of test

signals into the real-time application (AWG) and the readout of testpoint data, on demand,

via the aLIGO DAQ system.

• Local DC (local_dc): New in V4.0 is a local data concentrator process. This software

combines the DAQ data from all models running on an FE computer and writes this data to a

local_dc shared memory block. At this point, the data is properly formatted for:

o Connection to networking software to transmit the data to downstream DAQ

computers.

LIGO LIGO-T080135-v9

 12

o Connect to a local copy of data acquisition software (daqd) for use on a standalone

system.

• Data Publisher: In a distributed system, this software communicates DAQ data from real-

time applications to the aLIGO DAQ system for archival and/or real-time diagnostic use. This

process takes data from the local_dc shared memory and provides it on the DAQ from one or

more data subscibers.

5 RCG Application Development

5.1 General Rules and Guidelines

Some overview notes before starting an application development process:
1) Only modules shown in the CDS_PARTS.mdl file may be used in the application

development. Simulink native parts that may be used are shown in the CDS_PARTS >>
simLinkParts window. A description of all available parts is given in Section 7.

2) The tool is designed to work with the LIGO CDS standard naming convention, which
includes:

a. All channel names shall be upper case.
b. All channel names shall be of the form A1:SYS-SUBSYS_XXX_YYY where:

i. A1 is the Interferometer (IFO) site and number, such as H1, H2, L1, M1,
etc., followed by a colon (:). The IFO part of the name is set using the
cdsParameters part in the application model (see example in next
section).

ii. SYS is a three letter system designator, such as SUS, ISI, SEI, LSC,
ASC, etc., followed by a dash (-).

iii. SUBSYS and beyond are user definable, up to a maximum channel name
length of 48 characters (limit set by EPICS software). Underscores are
used to further break up the name, with any number of characters in
between.

3) The Matlab file name shall be of the form:
a. IFO name (two characters eg h1.
b. Subsystem name (three characters) eg sus, hpi, isi, etc.
c. Remainder of name is arbitrary, but should provide a further description of the

system to be controlled and must make the name unique for a particular
installation.

d. Examples for aLIGO: h1susetmx, h1susetmy, h1hpiham2. The RCG will pick
off the first two characters as the interferometer (IFO) name and expect the next
three characters to be the system name in order to produce a channel list
consistent with (2) above.

4) Every model shall contain one, and only one, Parameter Block.
5) Every model shall contain at least one ADC part.

LIGO LIGO-T080135-v9

 13

6) All I/O parts shall be on the model top level.
7) For ease of duplication, the top level of models should be limited to I/O parts, with other

parts nested in subsystem components. For example, the following model could be
duplicated by changing the “ETMX” subsystem block name to “ETMY” , change a few
parameter block entries and I/O connections to make a new model to perform the same
control functions on another suspension system.

Figure 6: RCG Example

LIGO LIGO-T080135-v9

 14

5.2 Code Compilation and Installation

In a standard aLIGO installation, a specific computer is set up by the site system administrator to
compile user models. User models are controlled under the CDS SVN repository in the userapps
area, with each major subsystem assigned a directory within this area. A new RCG user should
contact the site system administrator for this information.

The CDS RTS software is now available for download as packages. This includes the RCG. There
are now new build/install commands, covered under the next section, 5.2.1. For those pulling the
RCG from the CDS GIT repository, the previous RCG compile options are also available, as
described in Section 5.2.2.

5.2.1 Standard Compile and Install Using CDS RTS Package

For RCG 4.0, there are rtcds commands used to compile and install RCG software.

The commands to compile and install are:

1. Log into the site build machine.
2. Compile the application: rtcds build <modelname>
3. Install the code: rtcds install <modelname>

Note that it is no longer required to setup and go to a specific build directory as in previous releases.

5.2.2 Compile and Install Using RCG from GIT Repository

If RCG code is pulled from the GIT repository, then the previous RCG version 3 build procedures
can still be used.

1. Pull code from GIT repository. Standard directory to install to is /opt/rtcds/rtscore/advligorts.
2. Create a build directory. Standard is to create a /opt/rtcds/site/ifo/rtbuild directory.
3. In the build directory, configure the build ie execute /opt/rtcds/rtscore/advligorts/configure.
4. Compile the control model ie make <modelnam>. Compilation products include:

a. Real-time code source and executable kernel object in the BUILD/src/fe/modelname
directory.

b. EPICS database and compilation code in the BUILD/build/modelnameepics directory.
c. Complete EPICS database and executable, ready for installation, in the

BUILD/target/modelnameepics directory.
5. Install the code ie make install-<modelname>.

5.2.3 RCG Install Products

Using either the rtcds install or make install- commands described above results in the following
code installation:

1) A complete backup of the previous code installation into the
/opt/rtcds/site/ifo/target_archive/modelname directory.

2) Autogenerated EPICS MEDM screens are moved into the
/opt/rtcds/site/ifo/medm/modelname directory. If the EPICS caQtDM package is installed,
the RCG will also produce EPICS .ui files for use with caQtDM.

3) Runtime code moved into the /opt/rtcds/site/ifo/target/modelname directory, including:

• Real-time executable kernel object into the bin subdirectory.

• EPICS related code and startup scripts into the modelnameepics subdirectory.

LIGO LIGO-T080135-v9

 15

• Compilation information files into the src subdirectory. This area also contains a
copy of all source code used in this build.

• On first compile of a model, produce a safe.snap file for use with the CDS setpoint
monitoring software.

4) Appropriate GDS testpoint information moved into place for use by the DAQ and GDS
software.

5) DAQ channel configuration file moved into /opt/rtcds/site/ifo/chans/daq directory. This
file is used by the real-time code and DAQ system to acquire data.

6) IIR filter module coefficient definition file moved into /opt/rtcds/site/ifo/chans directory
as MODELNAME.txt. This file is used by the foton tool to store filter coefficient
information, loaded at run time by the real-time code to define its filter calculations.
NOTE: The real-time code will also read FIR filter definitions from a separate file, if
provided by the user ie not auto-generated and foton will not produce FIR filter
coefficients. Also, the use of FIR filters is limited to polyphase FIR on systems that run
only at 2048 or 4096 samples/sec.

6 Running the RCG Application

6.1 Application Startup

The RTS V4.0 and later software makes use of Linux systemd to control start/stop of RTS processes.
There are two alternatives provided.

6.1.1 Using rtcds command

If the RTS packages were installed, then the following start/stop commands are available.

• Log on to the computer on which the code will execute.

• Start the model: rtcds start <modelname>

• Restart a running model: rtcds restart <modelname>

• Stop a running model: rtcds stop <modelnam>

Additional rtcds command line options can be found at rtcds command line interface.

6.1.2 Using systemctl command

• Log on to the computer on which the code will execute.

• Start the model: sudo systemctl start rts@modelname.target

• Restart a running model: sudo systemctl restart rts@modelname.target

• Stop a running model: sudo systemctl stop rts@modelname.target

6.2 Runtime Processes

6.2.1 Control Application Processes

The RTS startup commands will result in the loading and execution of the following processes:

• EPICS process (<modelname>epics). This includes:
o Loading of the EPICS database.
o Restoration of user defined “safe” startup settings from safe.snap

https://git.ligo.org/cds/advligorts/-/wikis/RCG-command-line-interface:-rtcds

LIGO LIGO-T080135-v9

 16

o EPICS sequencer acting as interface between real-time kernel software and EPICS
database.

o Continuous monitoring of control setpoints.
▪ Compares values in Setpoint Definition File (SDF) against runtime readings.

• Real-time kernel object produced by the RCG, which provides the actual control
algorithms.

• The awgtpman process, to provide GDS support for this application.

6.2.2 DAQ Processes

6.2.2.1 Local DC

For both an FE in a distributed system or a CyMAC, the local_dc process must be started next.

local_dc -b <output_mbuf_name> -m 100 -s "system list" -w wait_time -d <par file path>

Where output_mbuf_name is the name of the output buffer to use. It defaults if not specified to
"local_dc"

-m 100 is the size of the output buffer in MB. It can be [40-100]. It defaults to 100. This is the
recommended size.

-s The system list. This is a space separated list of model names that the local_dc should pull data
from. The list should not include the "_daq" suffix.

-d par file path. In order to properly handle test points the local_dc must determine the model rate
(the rmIpcStr structure does not record that information). So the local_dc will try the following ways
to determine rate information.

• If directory is specified with -d par files for the models will be searched for there.

• If the GDS_TP_DIR environment variable is set, that directory will be used to search for the
par files.

• If the IFO and SITE environment variables are set the path to the par file will be created from
those /opt/rtcds/SITE/IFO/target/gds/param/.

• Failing that the dcuid and rate (optional) can be encoded in the model name. This should only
be done for something like the edc which is not a model. This is done by specifying the name
as "model:dcuid:rate". So the edc's name would be specified as "edc:52:16" (or "edc:52" as
the rate defaults to 16Hz if not specified).

6.2.2.2 DAQ Ethernet Connection

For an FE in a distributed system, the CDS DAQ network software must be started using the cps_xmit
command. Cps_xmit is typically invoked as follows:

cps_xmit -b <<buffer_name> -m 100 -D <delay ms> -p <publisher_string>

Where: -b is the buffer to read data from, it defaults to local_dc. -m is the size of the buffer in MB,
it defaults to 100MB. -D is the delay in ms to apply before sending data. This is used to stagger the
send times of the FE systems to reduce network collisions. -p is the publisher specification. It defaults
to udp://127.0.0.1/127.255.255.255.

Cps_xmit currently supports 3 publishing modes:

LIGO LIGO-T080135-v9

 17

• udp broadcast, specified by udp://<local iface name>/<broadcast address> As the name
implies this does a udp broadcast with the code being able to retransmit data that was not
received.

• tcp unicast, specified by tcp://<local ip address>:<port> This creates a service listening on
the given address/port which will send out the data as 16Hz blocks of data is received.

• udp multicast, specified by multi://<local address>/<multicast address>:<port> As the name
implies this does a udp multicast with the code being able to retransmit data that was not
received. The implementation is presently limited to doing multicast over ipv4, and the local
network.

LIGO LIGO-T080135-v9

 18

6.3 Runtime Diagnostics

Once the code is running, a number of diagnostics, in the form of EPICS MEDM screens and log
files, are available to verify proper operation. These diagnostics are described in LIGO-T1100625.

6.4 Additional Run Time Tools

LIGO LIGO-T080135-v9

 19

Along with EPICS MEDM, various additional tools are available to support real-time applications
during run-time. These are listed below, with a few described briefly in the following subsections.
For more detailed information, see the appropriate user guides for these applications.

• Setpoint monitoring tool: Part of every models EPICS task, used to monitor setpoints and
alert operators when setpoints have been changed.

• EPICS StripTool: Provides strip charting for EPICS channels.

• Dataviewer: Allows users to view DAQ and GDS TP channels, either live or from disk.

• ndscope: A live “oscilloscope” type data display tool.

• Diagnostic Test Tool (DTT): Allows for analysis of live or recorded DAQ/TP data,
particularly useful for calculating and plotting transfer functions.

• Foton: A GUI for the development of filter coefficients for use by the real-time software.

• Guardian: Python scripting tool used for supervisory level control automation.

LIGO LIGO-T080135-v9

 20

7 RCG Software Parts Library

The CDS_PARTS.mdl file contains symbols for the modules supported by the RCG. Only parts
defined in this library may be used with the RCG, i.e., the RCG does not support the full set of
Simulink parts and some custom parts have been added for specific purposes.

7.1 Top Level

CDS parts top level, shown below, contains:

1) Parameter Block: Required for all models.
2) Additional part subsystem blocks, which group parts by category.

7.1.1 cdsParameters

7.1.1.1 Function

The RCG uses various entries in the control model Parameter block to properly configure the code
produced by the RCG. The RCG supports two basic types of models:

LIGO LIGO-T080135-v9

 21

• Input/Output Processor (IOP): Primary tasks are to map all the PCIe modules in the I/O
Chassis (IOC), setup and maintain synchronization with the timing system and to provide the
interface to ADC/DAC modules to control models running on the same computer. There must
be one, and only one, IOP per front end (FE) computer.

• Control Application Model (CAM): These are user provided models intended to perform the
actual real-time control and data acquisition functions. There may be up to (number of
computer cores – 2) CAM loaded to a single FE computer. (Core 0 is reserved for Linux OS
and core 1 reserved for IOP)

7.1.1.2 Usage

This module must appear once, and only once, at the top level of an RCG
application model, by convention usually in the upper left-hand corner. Based
on information in this block, the RCG will produce either I/O Processor code
(if iop_model=1) or Control Application Model (CAM) code (iop_model=1
does not appear in the parameter list).

7.1.1.2.1 IOP Parameter Block Settings

Some IOP settings have changed and a few added in V4.0 to accommodate
various modes of operation. The following settings are standard for LIGO site
production systems.

• The minimum required entries for all IOP configurations are:
o ifo=x, where x is the ifo designator eg H1, L1, A1, etc.
▪ Note: This replaces site=x, supported in previous releases. For V4.0,
site= is still supported, but will be deprecated in future releases.
▪ Note: A1 is to be the designator for LIGO India
o iop_model=1: This indicates that the RCG should configure the code

to be an IOP
▪ Note: This replaces adcMaster=1. V4.0 still supports this, but this will be

deprecated in future releases.
o rate=x: The IOP code cycle rate. The standard rate for an IOP is 64K, matching the

ADC/DAC clocks. There are several options, described in optional IOP configuration
sections to follow.

o host=x, where x is the name of the computer on which the code is to run.
o dcuid=x, where x is a unique identifier number for data acquisition. This number must

be in the range of 5 to 13 or 16 to 255.

• Standard options used in production systems:
o pciRfm=1: Indicates FE computer should connect to the RTS real-time network for

communications between FE computers.
o dolphin_time_xmit=1: Indicates that this IOP should send its GPS time and cycle

count out on the real-time network. This is used by IOP models on FE computers that
do not have an I/O chassis connected for timing.

▪ Note: There can be only one real-time network time transmitter.
o requireIOcnt=1: Typically set for production systems. This will cause the IOP code

to exit on startup if it does not find all the I/O modules specified in the IOP model.
This is a safety factor to ensure the IOP does not read/write from the wrong
ADC/DAC modules.

LIGO LIGO-T080135-v9

 22

o dolphin_time_rcvr=1: Indicates that this IOP does not have an I/O chassis connected
and will use time information from the time transmitter.

o rfm_delay=1: Typically used in end station to corner station IPC data transfers. Since
the time of flight for signals over 4km can prevent these signals from arriving at the
next code cycle of the receiver, data is shifted by one cycle (written ahead 1 cycle).

For V4.0, there are also various optional run modes for IOP models.

7.1.1.2.1.1 Long Range IOP Configuration

In standard operation, an IOP receives ADC data at 64K, performs its processing cycle, and waits
for the next ADC data set to arrive. When a FE has its IOC connected over a long range fiber link,
it may be necessary for the IOP to request multiple ADC data blocks before performing a process
cycle due to data time of flight An example of this for LIGO is acquiring PEM data from mid-stations,
where the IOC is located in the mid-station, 2km away from its FE computer located in the corner
station.

To accommodate this, the IOP is setup to instruct the ADC modules to send two data sets every
second (2nd) clock cycle instead of a single set every clock cycle. Upon receipt of data, the IOP will
run thru two code cycles, continuing to send/receive data to/from CAMs at 64KS/sec.

For this configuration, the necessary parameter block settings are:

• rate=32K

• clock_div=2

NOTE: The settings shown above are specific to the LIGO use case for the PEM mid station
application and assumes a standard 64K ADC clock. These can be set differently, depending on the
specific application. The rule for these settings is: rate * clock_div = ADC clock frequency

7.1.1.2.1.2 Running IOP at 128K

The RTS now supports running of models at 128K. This requires the following IOP parameter
settings:

• rate=128K

• adcclock=128

7.1.1.2.1.3 Operation without a LIGO standard timing system

A LIGO standard timing system receiver is not always available, such as in lab spaces, and I/O timing
clocks are provided by other means. The IOP code supports this via two methods:

• If a 1PPS signal is provided on the last channel of the first ADC, the IOP code will
automatically choose this as the startup synchronization method.

• If no 1PPS synchronization signal is to be provided, then the IOP will perform startup
synchronization based on the FE computer internal clock. This requires an additional
parameter block setting:

o no_sync=1

7.1.1.2.1.4 High speed ADC support

LIGO LIGO-T080135-v9

 23

Support for the General Standards model 18AI32SSC1M PCIe ADC module has been added for.
RTS V4.0. Use of this module is targeted at a specific A+ application. Future releases will have a
finalized code set once requirements have been fully defined.

At this point, support is for the standard ADC clocking rates and a special 512KHz mode. For the
512KHz clock case, the IOP will acquire this data at 64K. This is done by having the ADC send 8
data sets every 8 clock cycles to the IOP. Upon receipt, the IOP will run through its model defined
processing 8 times, once for each data set, and then wait for the next data set. So, effectively, the IOP
is running at 512KHz and will send DAQ data at this full rate. (NOTE: Due to present per model
data rate limitations, only one DAQ/TP channel can be selected).

In the present IOP code, it will still pass ADC data to CAMs at 64KS/sec. This is done by passing
every 8th sample without decimation filtering (still awaiting requirements on this). If LIGO standard
ADC modules (General Standards 16AI64SSC) are included in the IOP model, then the IOP code
assumes these cards are being clocked at the standard 64K rate and read out and pass their data in the
normal way. This does however require the IOC to be provided with two separate clocks, 512KHz
and 64KHz.

NOTE: When there is a mix of 18AI32SSC and 16AI64SSC cards in the IOC, then a 16AI64SSC
should be in the first ADC position on the bus. This allows for standard timing diagnostics.

To operate at the 512KS/sec mode, the parameter block settings required for the IOP are:

• rate=512K

• clock_div=8

• no_sync=1: Presently, there are no LIGO IOCs with 512K clock or multi rate clocks.
Therefore, external clock(s) must be provided to the individual ADC modules.

7.1.1.2.1.5 Additional IOP Options

There are several additional options available for all IOP configurations.

• optimizeIO=1: Normally, the DAC FIFOs are initialized with two values and, as it runs, the
IOP maintains the FIFO at this size. This does introduce a 1 to 2 cycle delay between when
IOP writes data and DAC clocks data out. This is done to allow the IOP code to verify proper
DAC clocking. With this option set, the IOP will not preload the DAC FIFOs. This will
provide for a slightly lower phase delay of 1 to 2 cycles (15-30 usec, aassuming a 64K clock).

• no_zero_pad=1
o Without this set, upsampling of data from lower application code rates to the 64K

rate of DAC outputs uses a zero padding algorithm. This is the standard presently
used in all aLIGO systems. As an example, if data needs to be upsampled by a factor
of 8, the new value calculated for output by the application is applied to the
upsample IIR filter to produce the first output sample. To produce the remaining 7
samples, zero is supplied to the to the IIR filter. This form up upsampling provides
for a faster output response, however can have a down side of a noisy signal if a DC
output level is desired.

o With this parameter set, upsampling is done by repeatedly sending the application
calculated output to the upsample IIR filter. This can have a slower output response,
but will cleanly hold a DC level

LIGO LIGO-T080135-v9

 24

7.1.1.2.2 CAM Parameter Block Settings

In RCG V4.0, if the parameter block does not contain iop_model=1, then the model is built as a
CAM. Required CAM parameter block settings are:

• ifo=xy, where:
o x is the SITE designator eg H for Hanford, L for Livingston, etc.
o y is the IFO number for that site.
o Note: This replaces site=xy, supported in previous releases. For V4.0, site= is still

supported, but will be deprecated in future releases.
o Note: A1 is to be the designator for LIGO India. (SITE=LAO, IFO=A1)

• rate=x: The CAM code cycle rate. Supported options are 2K, 4K, 16K, 32K, 64K and 128K.

• host=x, where x is the name of the computer on which the code is to run.

• dcuid=x, where x is a unique identifier number for data acquisition. This number must be in
the range of 5 to 13 or 16 to 255.

• adcclock=128: Required only if the CAM is to run with an IOP running at 128K.

7.1.1.2.3 Parameter Block Options Common to both IOP and CAM

• ipc_rate=x, where x is 2048, 4096, 8192, 16384, or 32768 and x <= ½ the model rate. This
parameter was added to reduce IPC data traffic in cases where the IPC transmitter is running
much faster than the IPC receiver requires. A specific case is where SUS IOPs are sending
watchdog IPC signals at 64K to SEI systems that only need the data at much lower rates.

o NOTE: This setting will affect all IPC data transmissions from the model ie is
not per channel selectable.

• no_cpu_shutdown=1: Normally, at runtime, the IOP kernel object will lock its designated
core for its exclusive use. With this parameter set, the IOP will install itself as a standard
Linux kernel module without core locking. This can be useful in software debugging and
running the code on a computer with a standard Linux OS installed. Note that the code timing
will not be entirely stable when run in this mode but should still be good enough for testing.

• accum_overflow=1:ADC overflow accumulator value. Without this flag set, ADC and DAC
overrange counters get reset each second ie errors/sec. With this flag set, overrange indicators
will count continuously until either the integer value limit is reached or the DIAG RESET
has been set.

•

7.1.1.3 Operation

This component is used solely to set up appropriate compiler flags in the RCG. It is not linked as part
of the real-time code.

7.1.1.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v9

 25

7.2 C Code

The RCG provides the capability for application developers to provide their own C Code modules to
be linked in with the real-time code build.

7.2.1 cdsFunctionCall

7.2.1.1 Function

The purpose of this block is to allow users to link their own C code into
the real-time application built by RCG. It is typically used when RCG
does not support desired functions or the desired process is too
complicated to be drawn in a model file.

7.2.1.2 Usage

Process variables are passed into and out of the user C function by
connecting signals at the Mux inputs and Demux outputs. Any number
of inputs or outputs may be connected by adjusting the Mux/Demux I/O
sizes in MATLAB.

- The ‘Function Name’ must be changed to the name of the user
supplied function.

- Block Properties must be modified to point to the code and its
location in the form <inline> <C function name>
<Source file>.

o “inline” must be first entry, used as a flag to the
compiler. This allows the same function to be
used/called several times within a model and be
provided with its own static variables.

o C Function name, as defined in the source code
file.

o Source code file name. This can be either:
▪ The complete path to the file, as in the

example at right.
▪ Environment variable + filename, for

example $USER_CODE/omc_src.c,
where $USER_CODE has been defined
on the user’s computer to point to the
source code directory.

The user defined C code function must be of the form:

void Function_Name (double *in, int inSize, double *out, int
outSize)

where:

• *in is a pointer to the input variables. Inputs are
passed in the same order as they are connected
to the input Mux.

LIGO LIGO-T080135-v9

 26

• inSize indicates the number of parameters being passed to the function.

• *out is a pointer to the output variables. Outputs are passed back to the main code in
the same order as the Demux connections.

• outSize is the number of outputs allowed from the code module.

As a simple example of user code:

void RCG_EXAMPLE(double *in, int inSize, double *out, int outSize)

{

 if (in[2] > in[0]) out[0] = in[1] * -1;

 else out[0] = in[1];

}

7.2.1.3 Operation

At run-time, the code operates as defined by the user provided C code.

7.2.1.4 Associated EPICS Records

None.

7.2.1.5 Auto-Generated MEDM Screens

None.

LIGO LIGO-T080135-v9

 27

7.3 I/O Parts

The I/O parts library contains the drivers for connecting I/O modules to the system.

LIGO LIGO-T080135-v9

 28

7.3.1 ADC

7.3.1.1 Function

The purpose of this module is to define an ADC module. At
Presently, only the General Standards 32 channel, 16 bit
ADC is supported.

7.3.1.2 Usage

Each RCG model must include at least one (1) ADC block. All
models must start with ADC0, followed by ADC1, and so
forth. The “card_num” should then be changed, as
necessary, to point to the ADC module to connect to. A
number of ADC blocks are available in the CDS_PARTS
library for convenience, each with an embedded bus
creator with pre-defined signal names.

The output of this block must be tied to one or more ADC
Selector blocks to pick out and further connect individual
ADC signal channels.

7.3.1.3 Operation

No software is directly produced for this part. Rather, it is used as an indicator of how many and of
what type ADC module(s) the real-time I/O software should expect during operation.

7.3.1.4 Associated EPICS Records

None.

7.3.1.5 Auto-Generated MEDM Screen

For each IOP and user application, a screen is created which shows raw ADC data input values. In
the case of an IOP, this is the raw data received from the ADC module and being passed to user
applications via shared memory. In the case of user applications, this is the data being received via
the shared memory.

LIGO LIGO-T080135-v9

 29

LIGO LIGO-T080135-v9

 30

7.3.2 ADC Selector

7.3.2.1 Function

The function of the ADC Selector is to route selected
channels from an ADC to other RCG model blocks (it
is actually a Simulink Bus Selector part).

7.3.2.2 Usage

- Drag and drop the part into the model
window.

- Connect the input to an ADC part.
- Double click on the ADC selector and

select the desired signals from the Simulink
window.

- Connect the outputs to other RCG parts.

7.3.2.3 Operation

No real-time code is directly generated to support this
part. Rather, it is used by the RCG to produce appropriate signal links.

7.3.2.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v9

 31

7.3.3 DAC Modules

7.3.3.1 Function

The purpose of this block is to
allow signal connections to be
output to DAC output
channels.

7.3.3.2 Usage

Two type of DAC modules are supported:

1) 16 Channel, 16 bit from General
Standards.

2) 8 Channel, 18 bit from General
Standards.

To use:

1) Drag and drop the appropriate model to
the user model.

2) Change the part name to reflect instance
of DAC part within the model. As with
ADC parts, first DAC part must be
named “DAC_0” and then number
ending must increment by one for each
DAC module used.

3) Use the block properties to select the
desired DAC within the I/O chassis to
connect to.

7.3.3.3 Operation

As with the ADC part, this block is only used by
the real-time code to route signals to DAC modules.

7.3.3.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v9

 32

7.3.3.5 Auto-Generated MEDM Screens

This display shows four (4) DAC modules, with two columns each:

1) Left is value being sent (OUT):
a. For IOP, actual value it is sending out to the DAC module. The Red/Green

indicator above this column indicates whether or not the IOP is receiving
synchronous data from a user application to send out to the DAC. This indicator
will go RED and output discontinued if there is not an application running, or
running properly, to send data to the DAC eg user application is stopped.

b. For user app, actual value being sent to shared memory for IOP to relay to DAC
module.

2) Right is overflow counter (OFC) ie number of times per second output value exceeds +/-
32000 counts (16 bit DAC) or 128000 counts (18 bit DAC).

LIGO LIGO-T080135-v9

 33

7.3.4 cdsDio

7.3.4.1 Function

Provide support for Acces 24 bit digital I/O module. The
board manual can be found at PCI-DIO-24DH.PDF

7.3.4.2 Usage

In1 should be an integer, the lower 16 bits representing the bit
pattern to be sent as outputs. Out1 will return an integer, the
lower 8 bits of which represent the inputs to the I/O module.

7.3.4.3 Operation

The software sets the board to use 16 bits as outputs (Port A and
B) and 8 bits as inputs (Port C). Software within the advLigo/src/fe/map.c file provides three
supporting routines:

1) int mapDio(), which registers and initializes the board for use.
2) unsigned int readDio(), which is used to read the binary input bits.
3) void writeDio(), which is used to write to the 16 output bits.

Standard code definitions used in these code modules can be found in the
advLigo/src/include/drv/cdsHardware.h file.

7.3.4.4 Associated EPICS Records

None.

7.3.4.5 Auto-Generated MEDM Screens

None.

http://www.accesio.com/MANUALS/PCI-DIO-24DH.PDF

LIGO LIGO-T080135-v9

 34

7.3.5 cdsRio and cdsRio1 –

7.3.5.1 Function

Provide support for Acces 8 (cdsRio part) and 16 bit
relay modules (cdsRio1 part). The board manuals can
be found at

PCI-IIRO-8.PDF and PCI-IIRO-16.PDF.

7.3.5.2 Usage

When used, the part name must be modified to indicate
the instance of the card. For example, when using an 8
bit module (cdsRio), the name of the part must be
RIO_moduleNumber (RIO_0 for first instance of the
module type on the bus). Same needs to be done for the 16 bit part (cdsRio1_0).

The input to both parts is an integer, the lower 8 or 16 bits representing the output bit pattern to the
module.

In the case of the cdsRio part, two outputs are provided. Out1 simply returns the value written at In1.
Out2 will read the 8 bits of the module input register.

Out1 of the cdsRio1 part will return an integer, the lower 16 bits of which represent the 16 input bits
of the module.

7.3.5.3 Operation

7.3.5.4 Associated EPICS Records

None.

7.3.5.5 Auto-Generated MEDM Screens

None.

http://www.accesio.com/MANUALS/PCI-IIRO-8.PDF
http://www.accesio.com/MANUALS/PCI-IIRO-16.PDF

LIGO LIGO-T080135-v9

 35

7.3.6 cdsIPCx_PCIE, cdsIPCx_RFM, and cdsIPCx_SHMEM

7.3.6.1 Function

The purpose of these modules is to allow inter-process
communications (IPC), via a PCI Express (PCIE) Network or via a
Reflected Memory (RFM) Network for applications running on
different computers or via Shared Memory (SHMEM) for real-time
processes running on the same computer (but on separate CPU
cores). These modules supersede the cdsIPCx module.

7.3.6.2 Usage

The user must change the label to a signal name of the following
format (e.g.): H1:LSC-READOUT, where ‘H1’ is the IFO id. and
the part following the colon is a unique identifier for this particular
Inter-Process Communications (IPCx_<mmm>) module.

7.3.6.3 Operation

A separate IPC parameter file is maintained for each interferometer
(IFO). This file is located in the /opt/rtcds/<site>/<ifo>/chans/ipc
directory and its name must be <IFO>.ipc (e.g., H1.ipc). This file
must include a (five or more lines) data record for each IPCx module being used. The first line
should give the signal name (in all upper case) enclosed in square brackets. The second line should
give the IPC communication mechanism (SHMEM for Shared Memory, RFM for Reflected Memory
Network, or PCIE for PCI Express Network) in the format ‘ipcType=<communication mechanism>’.
The third line should give the sender data rate in the format ‘ipcRate=<data rate>. The fourth line
should give the host name in the format ‘ipcHost=<host name>’. The fifth line should give the the
IPCx Number in the format ‘ipcNum=<number>’. This can be followed by one (or several) comment
line(s), either beginning with ‘desc=’ or beginning with a ‘#’ sign (and followed by a comment or
descriptive text). The entries in this file can either be generated manually or be generated
automatically (during the make process). Please note that automatic IPC entry generation is only
possible for SENDER modules, i.e., the make process must be repeated until all modules (both
SENDER and RECEIVER type) have been processed in two or more user models where all included
IPCx modules are used as SENDERs.

A SENDER module is defined by having a signal attached to its input, but NO signal attached to its
outputs (‘Out’ and ‘Err’). A RECEIVER module is defined by having a “Ground” attached to its
input and the output signal attached to some other module (e.g., and EPICS output module, a Filter
module, etc.). The ‘Err’ output is only defined for RECEIVER modules and it can either be attached
to some other module or be left un-attached.

7.3.6.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v9

 36

7.3.6.5 Auto-Generated MEDM Screens

An IPC Status screen is generated for each RCG code model. An example is shown below.
Information includes:

• SIGNAL NAME: Name of the signal being received.

• SEND COMP: Name of the computer from which signal is being sent.

• SENDER MODEL: Name of the control model from which signal is being sent.

• IPC TYPE: Communication mechanism/network.

• STATUS: RED/GREEN indicator of IPC faults. Upon detection of fault, this indicator
remains latched RED until "DIAG RESET" is pushed on GDS_TP screen.

• ERR/SEC: Errors detected per second. If errors are continuing, this field will update every
second. If errors have stopped, number will be latched, as with STATUS above.

• ERR TIME: GPS time of the last error detection. If errors are continuing, this field will
update every second. If errors have stopped, number will be latched, as with STATUS
above.

LIGO LIGO-T080135-v9

 37

7.3.7 cdsCDO32

7.3.7.1 Function

This module provides I/O support for the Contec 32 bit, PCIe binary output module. The specification
sheet can be found at Contec32output.pdf.

7.3.7.2 Usage

In1 should be connected to a 32 bit value to be sent to the module. Out1 will return the value from
the board output register, which should be the same as the input value request.

7.3.7.3 Associated EPICS Records

None.

7.3.7.4 Auto-Generated MEDM Screen

None.

7.3.8 cdsCDIO1616 and cdsDIO6464

http://www2.contec.co.jp/prod_data/do32bpe/c01e.pdf

LIGO LIGO-T080135-v9

 38

7.3.8.1 Function

Used to connect Contec binary I/O modules.

NOTE: cdsDCIO1616 is designed only for use in an IOP to control the timing system.

7.3.8.2 Usage

The Contec1616 part should only be used in an IOP model. No input/output connections are required.

Use of the Contec6464 is used differently in an IOP than a user application model:

- In an IOP model, there should be one instance of a Contec6464 part for each card of that
type in the I/O chassis. The NAME field should end in the card instance number, for
example DIO_0, DIO_1, etc.

- Because of the large number of bits in this module and having to pass all of these as
significant bits to the EPICS interface, each Contec6464 card defined in the IOP is
presented as two 32 bit devices on the user side (lower 32 bit read/write and upper 32 bit
read/write registers). Therefore, part naming is different on the user application model
side. For example, if the user model is to address the lower 32 bits of the first Contec6464

LIGO LIGO-T080135-v9

 39

card in the I/O chassis, the NAME field must end in _0. To access the upper 32 read/write
bits, the NAME field must be end in _1.

7.3.8.3 Operation

Values from the card are read once per second.

Outputs are written whenever the value at the input to this part changes.

7.3.8.4 Associated EPICS Records

None.

7.3.8.5 Auto-Generated MEDM Screen

None.

LIGO LIGO-T080135-v9

 40

7.4 Simulink Parts

The RCG supports a number of standard Simulink parts, as shown in the simLinkParts window (at
right). In general, the code generated by the RCG behaves as it would in a Simulink model. Special
cases are described in the following subsections.

LIGO LIGO-T080135-v9

 41

7.4.1 Unit Delay

7.4.1.1 Function

Typically, the RCG produces sequential code that
starts with ADC inputs, performs the required
calculations, and ends with the DAC outputs.
However, there are cases where calculations
performed within the code are to be fed back as
inputs on the next code cycle. In these cases, the
desired feedback signal must be run through a
UnitDelay block to indicate to the RCG that this
signal will be used on the next cycle

7.4.1.2 Usage

An example showing the use of the UnitDelay block
is shown at right. If the output of Module 1 were to be tied directly back to the summing junction at
the input, it would produce an infinite loop in the code generator. By placing the UnitDelay in line,
the output of Module 1 is sent back to its input on the next cycle of the software.

7.4.1.3 Operation

Introduces a one cycle delay between input and output.

7.4.1.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v9

 42

7.4.2 Subsystem Part

7.4.2.1 Function

This is a standard MATLAB part for grouping individual parts into a
subsystem.

7.4.2.2 Usage

Any number of parts within the application model may be grouped into a
subsystem using the MATLAB subsystem part. The RCG uses the
assigned name as a prefix to all block names within the subsystem. This is
done in two ways:

➢ In the top example at right, if it is at the top level of the model, all
signal names for blocks within ASC would become
SITE:ModelFileName-ASC_xxxx. So, if the model file name is
omc.mdl and site defined as L1, names for parts within the ASC
subsystem part would become L1:OMC-ASC_xxxx.

➢ In the lower example (LSC), a tag has been added (using the Block Properties Window)
“top_names”. This is a flag to the RCG to use the name of this subsystem to replace the
model file name. Using the same example as above, all parts within this subsystem would
be prefixed L1:LSC-xxxx.

The use of the ‘top_names’ subsystem part tags provides a couple of useful features:
1) A single model may contain parts with multiple SYS names in the LIGO naming

convention. As seen in the example above, SYS is OMC (model name) for all ASC
subsystem parts (L1:OMC-ASC_), but L1:LSC- for all LSC subsystem parts. In the
same manner, ASC could also be defined ‘top_names’ and the results would be
L1:ASC- and L1:LSC-.

2) Multiple models may contain the same SYS name. This allows models running on
different processors to use the same SYS identifier in the signal names.

Warning: Since the name of all subsystems marked with the ‘top_names’ tag are used to
replace the three character SYS part in the LIGO naming convention, this name must be 3
characters in length, no more, no less!

Warning: Subsystems with the ‘top_names’ tag may only appear at the highest level of the

model, i.e., they may not be nested within other subsystems.

7.4.2.3 Operation

The subsystem part is only used by the RCG to produce appropriate signal names.

7.4.2.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v9

 43

7.4.3 MathFunction

7.4.3.1 Function

This module is used to include one of several mathematical functions in a
model.

7.4.3.2 Usage

Currently, the following mathematical functions are supported:

- Square of input value.
- Square root of input value.
- Reciprocal of input value.
- Modulo of two input values.

7.4.3.3 Operation

When using this module, place it in the model window and double click on the icon. This brings up
a Function Block Parameters window. Click on the down arrow at the right end of the “Function:”
line. This brings up a list of mathematical functions. Click on one of the supported functions (square,
sqrt, reciprocal, or mod), followed by clicking OK. Please note that clicking on any of the non-
supported functions (exp, log, 10^u, log10, magnitude^2, pow, conj, hypot, rem, transpose, or
hermitian) will result in a fatal error when attempting to make (compile) the model.

The square function will calculate the square of any input (double precision) value and pass it on as
the output value (in double precision).

The square root function will calculate the square root of any positive (double precision) value and
pass it on as the output value (in double precision). If the input value is negative or equal to zero,
the output value will be set to zero.

The reciprocal function will calculate the inverse of any input (double precision) value and pass it on
as the output value (in double precision), unless the input value is equal to zero in which case the
output value will be set to zero.

The mod (modulo) function takes two input values, In1 and In2. Since the modulo function only
operates on integer values, the output value (Out1, in double precision) is calculated as:

 Out1 = (double) ((int) In1%(int) In2)

except if the In2 value is equal to zero in which case the output value will be set to zero.

7.4.3.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v9

 44

7.4.3.5 Code Examples

The MathFunction module generates the following C code:

Square:

double mathfunction;

// MATH FUNCTION - SQUARE

mathfunction = <In1> * <In1>;

<Out1> = mathfunction;

Square root:

double mathfunction;

// MATH FUNCTION - SQUARE ROOT

if (<In1> > 0.0) {

 mathfunction = lsqrt(<In1>);

}

else {

 mathfunction = 0.0;

}

<Out1> = mathfunction;

LIGO LIGO-T080135-v9

 45

Reciprocal:

double mathfunction;

// MATH FUNCTION - RECIPROCAL

if (<In1> != 0.0) {

 mathfunction = 1.0/<In1>;

}

else {

 mathfunction = 0.0;

}

<Out1> = mathfunction;

Modulo:

double mathfunction;

// MATH FUNCTION - MODULO

if ((int) <In2> != 0) {

 mathfunction = (double) ((int) <In1>%(int) <In2>);

}

else {

 mathfunction = 0.0;

}

<Out1> = mathfunction;

LIGO LIGO-T080135-v9

 46

7.4.4 In-line (math) function

7.4.4.1 Function

This module is used to include a user defined in-line (math)
function in a model.

7.4.4.2 Usage

The module supports a number of different types of mathematical
functions:

- Polynomials.
- Non-polynomial combinations of variables and

constants.
- Sines and cosines.
- Floating-point absolute values.
- log10.
- Square root.
- Combinations of the above.

7.4.4.3 Operation

When using this module,
place it in the model
window and connect the
desired number of input
variables via a Mux and one
output that will pass on the
resulting value from the
(user defined) function.
Double click on the Fcn
icon and enter the desired
function in the Expression
field. The first (top) input
variable to the Mux is
defined as ‘u[1]’, the
second input variable (from
the top) is defined as ‘u[2]’,
etc. (please note the square
brackets). The user defined
function can consist of any
combination of terms made
up of constants multiplied
with variables, sine and/or
cosine functions, floating-
point absolute values, log10
values, and/or square roots.

LIGO LIGO-T080135-v9

 47

A (ficticious) example could be as follows (see next page):

LIGO LIGO-T080135-v9

 48

Once the function has
been defined, click on
OK and the function
will be incorporated
into the model. Please
note that it is up to the
user to ensure the
validity of entered
functions and values,
e.g., only positive
values for logarithms,
no negative values for
square roots, no
divisions by zero, etc.
Also, sine and cosine
values should, by
default, be given in radians. If angles in degrees are desired, replace ‘sin’ with ‘sindeg’ and ‘cos’
with ‘cosdeg’.

In order to include polynomials, a special technique must be used. This is best explained with an
example. Let’s assume the following polynomial should be used:

 Out = 2.0 * In1 – 3.5 * In2 ** 2 + 5.0 * In3 ** 3

This would require a
Mux with six inputs:

In other words, the first
input variable (‘In1’) is
connected to the first
input to the Mux
(‘u[1]’), the second
input variable (‘In2’) is
connected to the second
and third inputs to the
Mux (and will be
referred to as ‘u[2]’ and
‘u[3]’ in the function
expression), and the
third input variable
(‘In3’) is connected to
the fourth, fifth, and
sixth inputs to the Mux
(referred to as ‘u[4]’, ‘u[5]’,
and ‘u[6]’, respectively).

LIGO LIGO-T080135-v9

 49

7.4.4.4

Associated EPICS Records

None.

7.4.4.5 Code Examples

The in-line (math) function generates the following C code:

(This first example is identical to the first example in section 7.3.4.3.)

double fcn;

double conv = 3.141592654/180.0;

double lcos1, lsin1;

double mux[4];

// MUX

mux[0]= <In1[0]>;

mux[1]= <In1[1]>;

mux[2]= <In1[2]>;

mux[3]= <In1[3]>;

// Inline Function: Fcn

mux[2] *= conv;

sincos(mux[2], &lsin1, &lcos1);

fcn = 3.0 * mux[0] - 2.0/mux[1] + lsin1 * lsqrt(lfabs(mux[3]));

LIGO LIGO-T080135-v9

 50

<Out1> = fcn;

LIGO LIGO-T080135-v9

 51

(This example is identical to the second example in section 7.3.4.3.)

double fcn;

double mux[6];

// MUX

mux[0]= <In1[0]>;

mux[1]= <In1[1]>;

mux[2]= <In1[2]>;

mux[3]= <In1[3]>;

mux[4]= <In1[4]>;

mux[5]= <In1[5]>;

// Inline Function: Fcn

fcn = 2.0 * mux[0] - 3.5 * mux[1] * mux[2] + 5.0 * mux[3] * mux[4] * mux[5];

<Out1> = fcn;

LIGO LIGO-T080135-v9

 52

7.4.5 From/Goto

7.4.5.1 Function

Connect signals between components in a model without the use of lines
ie help provide a cleaner diagram.

7.4.5.2 Usage

GOTO part must be defined with a unique name. To connect that signal
to a FROM, the name of the GOTO must be provided.

7.4.5.3 Operation

Only used by RCG for signal routing in compilation.

LIGO LIGO-T080135-v9

 53

7.4.6 Bus Creator / Bus Selector

7.4.6.1 Function

Support for the Matlab standard bus creator/selector parts has been added
in version 2.x of the RCG. It’s primary function is to allow signal
connections between various model components with fewer line drawings
required, which in turn, provides for a cleaner model appearance.

7.4.6.2 Usage

1) Place the part in the model.
2) Double click the part, which brings up a dialog box.
3) Enter the number of inputs or outputs desired.
4) Connect inputs/outputs to other parts within the model.

LIGO LIGO-T080135-v9

 54

7.5 EPICS Parts

EPICS parts are used to input/output signals from/to the real-time application and EPICS. Some are
used primarily to communicate with operator displays, while others are intended to allow multiple
FE computers to communicate with each other using EPICS Channel Access (CA) via Ethernet
connections.

LIGO LIGO-T080135-v9

 55

7.5.1 cdsEpicsOutput/cdsEpicsIn

7.5.1.1 Function

The cdsEpicsOutput module is used to write data into an EPICS channel
and the cdsEpicsIn module reads in data from an EPICS channel. NOTE:
The resulting EPICS channels are built on and communicate with EPICS
on the local computer. To access EPICS channels on other computers, use
the cdsEzCaRead/Write modules.

7.5.1.2 Usage

For the EpicsOutput, connect the signal to be sent to EPICS via the ‘In1’
connection. The ‘Out1’ connection may be used to continue the signal into
another RCG part.

For EpicsInput, use the ‘Out1’ connection to pick up the EPICS data.

For both, modify the name to the desired EPICS channel name.

7.5.1.3 Operation

The RCG will produce local EPICS records with the assigned names and the real-time software will
communicate data to/from the EPICS records via shared memory.

7.5.1.4 Associated EPICS Records

A single ‘ai’ EPICS record will be produced using the assigned name.

7.5.1.5 Setting EPICS Database Fields

EPICS database records have a number of parameters, or fields, which may be set as part of the
database record definition file. For each model compiled with the RCG, a corresponding EPICS
database file is created for runtime support.

By default, the RCG only sets the precision of EPICS input and output records in the database file
(PREC=3), which provides 3 decimal places of precision when viewed on an MEDM screen.

The RCG does allow users to define parameter fields for the EPICS Input and Output part types
within the user model, as described below. A complete list of parameters supported by EPICS AO
and AI record types can be found in the EPICS user guide online.

To define these EPICS fields:

• Place an EPICS Input or Output part into the model and provide a name for the part.

• Open the block properties window for the part. By default, the Description field provides
some basic info on the part (Figure 1 below).

LIGO LIGO-T080135-v9

 56

• Delete the provided Description information. (While RCG will ignore this default
information, it is probably best to delete it for ease of reading later).

• Add EPICS database parameter information, as shown in Figure 2 below, in the Description
area.

o Each entry must be of the form ‘field(PARAM,”VALUE”)’, where:
▪ PARAM = The EPICS parameter definition, such as PREC, HIGH, LOW, etc.

The most commonly used are:

• PREC (Precision), number of decimal places returned to MEDM
screens for viewing. Note that this does not affect the calculation
precision ie all EPICS values are treated as doubles in the runtime
code.

• HOPR (High Operating Range)

• LOPR (Low Operating Range)

• Alarm Severities: HHSV, HSV,LSV,LLSV.

• Alarm Setpoints: HIHI, HIGH, LOW, LOLO
▪ VALUE = Desired default setting, which must be in quotes.

• Alarm Severities are limited to the following:
o MAJOR
o MINOR
o INVALID
o NO_ALARM (Default, if not specified)

• Other entries listed above are all taken as floating point numbers.

LIGO LIGO-T080135-v9

 57

• Field definition entries may be separated by white space or new lines, or both, as shown in
the example below.

WARNING: Presently, the RCG does not perform any checking of the validity of user definitions
provided with the field entries. As long as the entry is of the right form, the RCG will add it to the
database definition file. Therefore, it is the user responsibility to ensure entries are correct. Entry
error checking is presently being worked for RCG release V2.7 and later.

LIGO LIGO-T080135-v9

 58

7.5.3 EpicsInCtrl

7.5.3.1 Function

The purpose of this block is to allow local control, ie from
within the real-time code, of EPICS input variables.

7.5.3.2 Usage

Beyond the single output connection of the standard EPICS
Input part, this part has two inputs added:

- Mask: This input controls what the input to this
part will be:

o From the associated EPICS record (remote control), which is the standard input
for the EPICS input part.

o Or from the real-time code (local control) via the Value input.

7.5.3.3 Operation

Operation of this part is primarily based on the Mask input signal.

- If Mask input = 0, this part will receive its input from the associated EPICS record ie
remote control.

- If Mask=1, this indicates local control. The output of this block will be the Value input
on the second input connection. This value will also be sent to EPICS, causing the
associated EPICS record to take on this value. In this manner, when the mask is set back
to zero and inputs are coming from EPICS, the value set locally will remain the same.
NOTE: When the Mask input is set to 1 and later returned to 0, there will be a one second
delay before remote control is re-enabled. This is done to prevent a race condition
between EPICS and local control ie ensure EPICS has the updated information prior to
switching back to remote control.

7.5.3.4 Associated EPICS Records

A single ‘ai’ EPICS record will be produced using the assigned name.

LIGO LIGO-T080135-v9

 59

7.5.5 cdsEpicsBinIn

7.5.5.1 Function

This part is used to interface a standard EPICS binary input record into the
real-time application.

7.5.5.2 Usage

Connect the output to where in EPICS value is to be passed.

7.5.5.3 Operation

Out1 = EPICS value placed in shared memory.

7.5.5.4 Associated EPICS Records

A single ‘bi’ EPICS record will be produced using the assigned name.

LIGO LIGO-T080135-v9

 60

7.5.6 cdsRemoteIntlk

7.5.6.1 Function

7.5.6.2 Usage

7.5.6.3 Operation

7.5.6.4 Associated EPICS Records

A single ‘ai’ EPICS record will be produced using the assigned name.

LIGO LIGO-T080135-v9

 61

7.5.7 cdsEzCaRead/cdsEzCaWrite

7.5.7.1 Function

These blocks are used to communicate data, via EPICS channel access,
between real-time code running on separate computers.

7.5.7.2 Usage

Insert the block into the model and modify the name to be the exact name
of the remote EPICS channel to be accessed. This must be the full name, in
LIGO standard format, including IFO:SYS-.

7.5.7.3 Operation

The EPICS sequencer which supports the real-time code will have
EzCaRead/EzCaWrite commands added to obtain/set the desired values via
the Ethernet. Values are passed out of/into the real-time code via shared
memory.

7.5.7.4 Associated EPICS Records

Each of these two modules will produce a double precision floating-point EPICS channel access
record.

7.5.7.5 Code Examples

LIGO LIGO-T080135-v9

 62

7.5.8 EPICS Momentary

7.5.8.1 Function

The cdsEpicsMomentary module is used to flip one bi

7.5.8.2 Usage

…

7.5.8.3 Operation

7.5.8.4 Associated EPICS Records

A momentary ‘ai’ EPICS record switch will be produced using the name
assigned to this block.

LIGO LIGO-T080135-v9

 63

7.6 Osc/Phase

The Osc/Phase section groups together
two different phase rotators, a software
oscillator, and a saturation count
module.

LIGO LIGO-T080135-v9

 64

7.6.1 cdsPhase

7.6.1.1 Function

This block replicates an I&Q phase rotator used in the LIGO LSC control
software.

7.6.1.2 Usage

This module is used to change the phase of the input values by a specific
phase angle.

7.6.1.3 Operation

The EPICS code reads in the user variable and calculates the sine and cosine
for this entered value. These two values (sinPhase, cosPhase) are then passed to the real-time
software, which performs the following calculations:

Out1 = In1 * cosPhase + In2 * sinPhase

Out2 = In2 * cosPhase – In1 * sinPhase

7.6.1.4 Associated EPICS Records

A single ‘ai’ EPICS record is produced to support this module. Entries in this record are in units of
degrees.

LIGO LIGO-T080135-v9

 65

7.6.2 cdsWfsPhase

7.6.2.1 Function

7.6.2.2 Usage

7.6.2.3 Operation

7.6.2.4 Associated EPICS Records

A single ‘ai’ EPICS record is produced to support this module. Entries in this
record are in units of degrees.

7.6.3 cdsOsc

LIGO LIGO-T080135-v9

 66

7.6.3.1 Function

This block is a software oscillator, developed to support dither locking where two signals with 90
degrees phase rotation are required.

7.6.3.2 Usage

This module is used to produce a sine wave at a specific
frequency.

NOTE: This part still requires a GROUND at its input
to compile properly (bug yet to be fixed).

7.6.3.3 Operation

The three outputs are a sine wave at the user requested
frequency. The 'CLK' and 'SIN' outputs are in phase
with each other and the 'COS' output is 90 degrees out
of phase. The block internal sine wave varies in amplitude from -1 to +1. The three outputs are then
multiplied by their individual gain settings to produce the 'CLK', 'SIN', and 'COS' outputs.

When changing a gain, if the TRAMP channel is set to 0 (or below), it will instantly change the gain.
A positive TRAMP value will cause the gain to perform a spline ramp ot the new gain over the a
number of seconds equal to the value.

When changing frequency, if the TRAMP channel is set to 0 (or below), it will change frequency at
the next GPS second (as clocked by the front end). It will have an initial phase of 0. If the TRAMP
channel is positive, it will immediately start ramping to the new frequency over a number of seconds
equal to the value. It will have a phase such that at the next GPS second after it finishes ramping it
will have a phase of 0.

7.6.3.4 Associated EPICS Records

Four EPICS records are produced for user entries:

_FREQ: Desired frequency in Hz

_CLKGAIN: CLK gain setting

_SINGAIN: SIN gain setting

_COSGAIN: COS gain setting

_TRAMP: Time to do gain and frequency ramping, in seconds.

LIGO LIGO-T080135-v9

 67

7.6.4 cdsSatCount

7.6.4.1 Function

The purpose of this block is to count the number of times a channel
has saturated since the last time the counter was reset.

7.6.4.2 Usage

This block is used to monitor a data channel in order to keep track of
whether or not the input datum is greater than or equal to a saturation
threshold value and also keep counts of how often this happens.

7.6.4.3 Operation

Both the TotalCount counter and the RunningCount counter are
zeroed on initialization.

The TotalCount counter will keep incrementing (by one per cycle) as long as the absolute value of
the channel (input) datum is greater than or equal to the TRIGGER (EPICS input) threshold value.
The TotalCount counter can only be reset (to zero) by entering a one in the RESET (EPICS input)
switch.

The RunningCount counter will keep incrementing (by one per cycle) as long as the absolute value
of the channel (input) datum is greater than or equal to the TRIGGER (EPICS input) threshold value.
This counter will be reset (to zero) when the channel (input) datum becomes less than the TRIGGER
(EPICS input) threshold value or, conversely, when the TRIGGER (EPICS input) threshold value is
modified to a value greater than the channel (input) datum.

7.6.4.4 Associated EPICS Records

Two EPICS records are produced for user inputs:

_RESET: This is a momentary RESET switch that zeroes the TotalCount output (when set to
one; initial default value is equal to zero and the RESET switch returns to zero after
the TotalCount output has been zeroed).

_TRIGGER: The TotalCount and RunningCount counters (and outputs) will increment as long as
the absolute value of the channel (input) datum is greater than or equal to the
TRIGGER threshold value (initial default TRIGGER value is equal to zero)

7.6.5 cdsNoise

LIGO LIGO-T080135-v9

 68

LIGO LIGO-T080135-v9

 69

7.8 Filters

The key servo control functions provided by the RCG are in the form of digital filters, as shown in
the Filter Parts section.

For most applications, the IIR Filter Module is used. The PolyPhase FIR Filter is designed only for
the Ligo HEPI (Hydraulic External Pre-Isolator) controls application and is not intended for general
use.

LIGO LIGO-T080135-v9

 70

7.8.1 CDS Standard IIR Filter Module

7.8.1.1 Function

All CDS FE processors use digital Infinite Impulse Response (IIR) filters to
perform a majority of their signal conditioning and control algorithm tasks.
In order to facilitate their incorporation into FE software and to provide a
standard set of DAQ and diagnostic capabilities, the Standard Filter Module
(SFM) was developed.

7.8.1.2 Usage

Desired input signal is connected at ‘In1’ and output at ‘Out1’. ‘IIR Filter
Module’ name tag is replaced with user name.

7.8.1.3 Operation

To help illustrate the operation of the LIGO CDS Standard Filter Module (SFM), an operator MEDM
screen shot is shown below. Signal flow is from Input (left) to Output (right).

7.8.1.3.1 Input Section

The SFM input is as defined by the user in the MATLAB Simulink model. At run-time, this signal
is available to EPICS (_INMON) and is available to diagnostic tools as a test point (_IN1) at the

Input

Input

On/Off

Input

DC

Offset

Offset

On/Off

AWG

Input

IIR Filters

(10)

Filter Name

Test Point

(IN1)

Test Point

(IN2)

Clear

Filter

Histories

Load

New

Coeffs

Output

Gain

Output

Limit

Setting

Limiter

On/Off

Test Point

(OUT)

Output

On/Off

16Hz

Decimation

On/Off

Hold Output

Value

On/Off

Gain

Ramp

Time

LIGO LIGO-T080135-v9

 71

sampling rate of the software. This signal may continue on or be set to zero at this point by use of
the Input On/Off switch.

Each SFM also has an excitation signal input available from the Arbitrary Waveform Generator
(AWG). This signal is available for EPICS (_EXCMON). The AWG signal is summed with the
input signal, and available to diagnostic tools as a second test point (_IN2).

To this resulting signal, a DC offset may be added (Input DC Offset) and this offset may be turned
on/off via the Offset on/off switch. The sum of the input, AWG and offset signal is then fed to the
IIR filtering section.

7.8.1.3.2 Filtering Section

The filter section may have up to 10 IIR filters defined, with up to 10 Second Order Sections (SOS)
each. The software allows for any/all of these filters to be redefined “on the fly”, i.e., an FE process
does not need to be rebooted, restarted or otherwise interrupted from its tasks during reconfiguration.

Each filter within an SFM may be individually turned on/off during operation. Various types of
input/output switching may be defined for each individual filter.

EXC

IN

Offset Offset On/Off

TP

TP

Input On/Off

To Filter Section

Input Section

LIGO LIGO-T080135-v9

 72

The filter

coefficients and switching properties are defined in a text file produced by the foton tool. Filter
coefficient files used by the SFM must be located in the /cvs/cds/<site>/chans directory. This file
contains:

• The names of all SFMs defined within an FE processor. Each SFM within a front end is given a unique

name in the EPICS sequencer software used to download the SFM coefficients to the front end. These
names must be provided in this file for use by foton. This is done by listing the SFM names after the
keyword ‘MODULES’. As an example, from the LSC FE file:

• # MODULES DARM MICH PRC CARM MICH_CORR

• # MODULES BS RM AS1_I

• A line (or lines) for each filter within an SFM, describing filter attributes and coefficients. These lines
must contain the information listed in the following table, in the exact order given in the table.

Field Description

SFM Name The EPICS name of the filter module to which the remaining parameters are to
apply.

Filter
Number

The number of the filter (0-9) within the given SFM to which the remaining
parameters are to apply.

Filter
Switching

As previously mentioned, individual filters may have different switching
capabilities set. This two digit number describes how the filter is to switch on/off.
This number is calculated by input_switch_type x 10 + output_switch_type.

The supported values for input switching are:
• 0 – Input is always applied to filter.

• 1 – Input switch will switch with output switch. When filter output switch goes to
‘OFF’, all filter history variables will be set to zero.

Four types of output switching are supported. These are:
• 0 – Immediate. The output will switch on or off as soon as commanded.

• 1 – Ramp: The output will ramp up over the number of cycles defined by the
RAMP field.

Filter On/Off

Filter Coefficients (x41)

Number of SOS (1-10)

Switching Method

Output Switch Readback

History Reset

Coefficient Reload

Filter (x10)
Filter Section

LIGO LIGO-T080135-v9

 73

• 2 – Input Crossing: The output will switch when the filter input and output are
within a given value of each other. This value is contained in the RAMP field.

• 3 – Zero Crossing: The output will switch when the filter input crosses zero.

Number of
SOS

This field contains the number of Second Order Sections in this filter.

RAMP The contents of this field are dependent on the Filter Switching type.

Timeout For type 2 and 3 filter output switching (input and zero crossing), a time-out value
must be provided (in FE cycles). If the output switching requirements are not met
within this number of cycles, the output will switch anyway.

Filter Name This name will be printed to the EPICS displays which have that filter. It is
basically a comment field.

Filter Gain Overall gain term of the filter.

Filter
Coefficients

The coefficients which describe the filter design.

A skeleton coefficient file is produced the first time ‘make-install’ is invoked after compiling a model
file. Thereafter, whenever ‘make-install’ is executed, the install process will make a back-up of the
present coefficient file, then patch the present file with any new filter modules or renaming of filter
modules.

7.8.1.3.3 Output Section

The following figure shows the output section. The output section provides for:
• A variable gain to be applied to the filter section output. This gain may be ramped over time from one

setting to another by setting the gain ramp time.

• This output to be limited to a selected value (the output limiter can be switched on or off).

• A GDS TP. This TP is always on, regardless of whether the output is turned on or off.

• Ability to turn output on or off.

• A decimation filter to provide a 16Hz output (typically used by EPICS; the decimation filter can be
switched on or off).

• A “hold” output feature. When enabled, the output of the SFM will be held to its present value.

LIGO LIGO-T080135-v9

 74

Associated EPICS Records

For each filter module, the following EPICS records are produced, with the filter name as the prefix:

_INMON = Filter module input value (RO)

_EXCMON = Filter module excitation signal input value (RO)

_OFFSET = User settable offset value (W/R)

_GAIN = Filter module output gain (W/R)

_TRAMP = Gain ramping time, in seconds (W/R)

_LIMIT = User defined filter module output limit (W/R)

_OUTMON = Output test-point value (RO)

_OUT16 = Filter module output, decimation filtered to 16Hz (RO)

_OUTPUT = Filter module output value (RO)

_SW1 = Momentary filter switch selections, lower 16 bits (WO)

_SW2 = Momentary filter switch selections, upper 16 bits (WO)

_RSET = Momentary clear filter history switch (WO)

_SW1R = Filter switch read-backs, lower 16 bits (RO)

_SW2R = Filter switch read-backs, upper 16 bits (RO)

 Limit Setting

Decimation Filter

Decimation On/Off

Limiter On/Off

Output Hold

Gain Setting

Output Limiter

Output Section

GAIN

TP

OUT16

OUT

Output On/Off

Output Hold On/Off

LIGO LIGO-T080135-v9

 75

_SW1S = Saved filter switch selections, lower 16 bits (RO)

_SW2S = Saved filter switch selections, upper 16 bits (RO)

_Name00 thru _Name09 = Individual filter names, as defined in the coefficient file (RO)

7.8.1.4 Auto-Generated MEDM Screens

For each IIR filter module defined in the user model, a standard MEDM screen will be produced as
part of the build process. An example screen is shown below.

This screen contains the following EPICS I/O:

• INMON and Input On/Off: Displays the filter module input value. The following on/off
switch applies/removes the input signal from the filter bank.

• EXCMON: The value of an excitation input. This field is typically 0.0 except when a GDS
excitation signal is being applied.

• OFFSET value and Offset On/Off switch: Allows the user to add a DC offset to the input
prior to entering the filter bank. The indicator below the offset value will be green if turned
on and red if turned off.

• Filter module names and selections: The 10 available filters per bank appear to the right of
the offset value field. Names, as defined using the foton tool, appear above each filter
selection button. The filter selection buttons are used to turn the filters on/off. Below each
filter button are two status indicator block. The left box indicates if a filter has been selected
to be turned on (green) or off (red). The right box indicates when the real-time code has
actually turned on (green) the filter or turned off (red) the filter.

• Gain and Ramping: The signal out from the filter bank may be multiplied by the gain
setting. To avoid a sudden excursion of the signal when a new gain is selected, this gain
may be ramped over the number of seconds entered into the Ramp Time setting. This
ramping is performed by the real-time code. When the real-time code gain is not the same

LIGO LIGO-T080135-v9

 76

as the entered gain, i.e., during the ramping, the background of the triangle surrounding the
gain setting will be yellow. Once the ramping is complete, the triangle will become black.

• LIMIT setting and on/off switch: The output of the filter bank may be limited by the user by
setting the limit field and turning the limit switch on (green indicator). The real-time code
will then limit the output to +/- the limit setting.

• Output On/Off and OUTPUT monitor: Turns the output on/off, with the filter bank output
value displayed in the OUTPUT field. Note that the OUTMON (output test-point) will still
have the output of the filter bank.

• DECIMATION On/Off switch and OUT16 field: The real-time code decimates the filter
bank output to 16Hz, the resulting value being placed in the OUT16 field.

• HOLD OUTPUT: When selected, the output of the filter module is held to the present value
(seldom used).

• CLEAR HISTORY: When selected, clears the history of all filters within the filter module.
This is typically used when integrators have been defined and have rung up to a large value.

• LOAD COEFFICIENTS: Loads new filter coefficients and reloads existing filter
coefficients for this filter module.

In RCG V2.7, this screen has been modified with a lower section of new indicators and settings, as
shown in the following figure:

LIGO LIGO-T080135-v9

 77

1. SWMASK Setting: A text entry block is provided, along with indicators of the bit settings
that correspond to this setting. If a MASK bit is set, the indicator will be YELLOW. This
indicates which bits the Guardian script requires to be as set by the SWREQ word. In this
example, MASK indicates that Guardian requires Input, Offset, Filter 2, Limit and Output
switches to be set as indicated by the SWREQ setting. All other switch settings are ‘Don’t
Care’, ie may be either ON or OFF.

2. SWREQ Setting: Text entry point for setting the Guardian requested switch states and bit
pattern indicators. If a switch is required to be ON, then indicator is LIGHT BLUE. If required
OFF, indicator is DARK BLUE. In this example, Guardian requires:

 - Input Switch ON

 - Offset Switch OFF

 - Filter Switch 2 ON

 - Limit Switch OFF

 - Output Switch ON

3. Alarm Severity Setting: In order for Guardian to be notified of a mismatch between required
and actual switch settings, the ALARM SEVERITY must be set.

4. Alarm Limit: This should always be set to 0x7fff (32767), as bit 15 set is the alarm bit, as
previously described.

5. SWSTAT: Bit indicators of the present SFM switch settings and alarm indication
(SWSTATUS in YELLOW/RED if alarm state).

6. Error indicators (RED arrows), pointing out which switches are not set as required by
Guardian. In this example, Output switch is set to OFF, whereas Guardian requirement is that
this switch be ON.

LIGO LIGO-T080135-v9

 78

7.8.2 IIR Filter Module with Control

7.8.2.1 Function

This module is a standard filter module, with the addition that the
SFM switch and filter status are output and a second input has been
added.

7.8.2.2 Usage

The additional input must be connected to ground or some other
module (e.g., cdsEpicsIn) for the code to compile. The additional
control output is used to provide some downstream control or
decision making based on the switch settings within the SFM.
Typically this output is tied to a bitwise operator to select the desired
bits, often to then go to binary output modules to switch relays based on filters being on/off.

LIGO LIGO-T080135-v9

 79

7.8.2.3 Operation

In addition to the SFM operation, this block outputs the internal switch information in the form of a
32-bit integer. The bits of this integer are defined in the following table.

Bit Name Description

0 Coeff Reset This is a momentary bit. When set, the EPICS CPU will read in new
SFM coeffs from file and send this information to the FE via the RFM
network. The FE SFM will read and load new filter coefficients from
RFM.

1 Master Reset Momentary; when set, SFM will reset all filter history buffers.

2 Input On/Off Enables/disables signal input to SFM.

3 Offset Switch Enables/disables application of SFM input offset value.

Even
bits 4-
22

Filter
Request

Set to one when an SFM filter is requested ON, or zero when SFM filter
requested OFF (bit 4 is associated with filter module 1, bit 6 with filter
module 2, etc.).

Odd
bits 5-
23

Filter Status Set to one by SFM when an SFM filter is ON, or zero when SFM filter
is OFF (bit 5 is associated with filter module 1, bit 7 with filter module
2, etc.).

24 Limiter
Switch

Enables/disables application of SFM output limit value.

25 Decimation
Switch

Enables/Disables application of decimation filter to SFM OUT16
calculation.

26 Output
Switch

Enables/Disables SFM output (SFM OUT and OUT16 variables)

27 Hold Output If (!bit 26 && bit27), SFM OUT will be held at last value.

28 Gain Ramp If set, gain of filter module != requested gain. This bit is set when SFM
gain is ramping to a new gain request.

7.8.2.4 Associated EPICS Records

Same as cdsFilt module.

7.8.2.5 Auto-Generated MEDM Screens

Same as those provided for cdsFilt part.

LIGO LIGO-T080135-v9

 80

7.8.3 IIR Filter Module with Control 2

7.8.3.1 Function

This part is similar in function to the IIR Filter Module with Control, described in the previous
section. However, it has additional inputs/outputs defined to control more settings from within a
user control model. The three new inputs allow for setting of the FMC2 offset, gain and ramp time
from within the user control model. The new outputs provide information on the present settings
for these three filter module parameters, regardless of whether or not a value is under local or
remote control.

LIGO LIGO-T080135-v9

 81

7.8.3.2 Detailed Description

The bit patterns for the Cin and Mask inputs and Ctrl output are also changed for the FMC2 part.
These are all now 16bit words, as defined in the following table. Note that “Local Control” is defined
as setpoint control from within the real-time code (user model) and “Remote Control” is defined as
control from outside of the real-time code via EPICS Channel Access (ECA), such as from operator
MEDM screens, EPICS scripts, etc.

Table 1: Cin and MASK Input and Ctrl Output Word Bit Definitions

Bit Cin

Setting Request

0 = Off, 1 = On

MASK

Local/Remote Control Set

0 = Remote, 1 = Local

Ctrl

Switch Setting Readout

0 = Off, 1 = On

0 Filter 1 on/off Filter 1 L/R control Filter 1 on/off

1 Filter 2 on/off Filter 2 L/R control Filter 2 on/off

2 Filter 3 on/off Filter 3 L/R control Filter 3 on/off

3 Filter 4 on/off Filter 4 L/R control Filter 4 on/off

4 Filter 5 on/off Filter 5 L/R control Filter 5 on/off

5 Filter 6 on/off Filter 6 L/R control Filter 6 on/off

6 Filter 7 on/off Filter 7 L/R control Filter 7 on/off

LIGO LIGO-T080135-v9

 82

7 Filter 8 on/off Filter 8 L/R control Filter 8 on/off

8 Filter 9 on/off Filter 9 L/R control Filter 9 on/off

9 Filter 10 on/off Filter 10 L/R control Filter 10 on/off

10 FM Input Switch on/off FM Input Switch L/R FM Input Switch on/off

11 FM Offset Switch on/off FM Offset Switch L/R FM Offset Switch on/off

12 FM Output Switch on/off FM Output Switch L/R FM Output Switch on/off

13 Not Used FM Offset Setting L/R FM Offset Setting L/R

14 Not Used FM Gain Setting L/R FM Gain Setting L/R

15 Not Used FM Ramp Time L/R FM Ramp Time L/R

It should be noted that the Cin input only requires, and RCG code only recognizes, bits 0 through 12.
Bits 13 through 15 appear as part of the Ctrl output as a reflection of the upper 3 bits in the MASK
input.

7.8.3.3 Usage

Local control of FMC2 settings is enabled/disabled via the MASK input. If the MASK input is zero
(0), then all settings are controlled remotely. In this case, the part operates in a manner similar to the
standard filter module part, with all settings coming via ECA and EPICS data base records. The
values presented at the Cin, Offset, Gain and Ramp inputs are ignored.

Setting a bit to one (1) at the MASK input changes control of the associated parameter to local
control. The Cin word is now used to select switch settings, and Gain, Offset and Ramp inputs are
used to set those parameters (if associated MASK bit set to one (1)). Rather than being read from
EPICS (remote control), the selected parameter settings at the FMC2 input are now sent back to
EPICS. Since the EPICS records are updated with the local control settings, switching back to remote
control will not change the present settings of the FMC2 ie FMC2 will receive the same settings as
last written via local control prior to the switch over.

Whether a parameter is in local or remote control, the Ctrl and Offset, Gain and Ramp outputs always
reflect the present FMC2 settings. These outputs are provided to allow user code to determine present
state prior to switching to local control and/or verification of settings while in local control.

It should be noted that the lower 10 bits of the Ctrl output reflect the present on/off state of the
individual filters, not the requested state. Therefore, depending on filter design, there may be a delay
between on/off request at the Cin input and the associated on/off bit setting in the Ctrl output word.
For example, if a filter is designed, using foton, to switch only on zero crossing, there may be a delay
between switching request and actual filter turn on/off.

7.8.3.4 EPICS Database Records

Beyond those provided for standard IIR filter modules, an additional record is provided to reflect the
MASK input setting. This record is of the form FILTER_MODULE_NAME_MASK.

LIGO LIGO-T080135-v9

 83

7.8.3.5 Auto-Generated MEDM Screen

The RCG produces a screen that is similar to that produced for the standard IIR filter part. An added
feature is indication of which filter module parameters are presently under control by the RT code
model. Near each setting on the screen, an LC (local control) will appear when under RT code
control.

LIGO LIGO-T080135-v9

 84

7.8.4 PolyPhase FIR Filter

7.8.4.1 Function

This module allows the use of Polyphase FIR (Finite Impulse Response)
filters, typically used in seismic isolation system controls.

7.8.4.2 Usage

This part is placed into the model and functions exactly as the cdsFilter part.
To load an FIR at runtime, a separate coefficient file must be provided for
FIR filters (/cvs/cds/site/chans/modelName.fir).

N.B. The sample rate must be either 2K or 4K when PolyPhase FIR Filters
are being used.

7.8.4.3 Operation

Use of this part simply sets a compiler flag to allow the use of FIR filters. In all other respects, it
functions in the same way as the cdsFilter part described previously. In fact, this part allows a mix
of IIR and FIR filters to be assigned to the 10 available digital filters within the module. The
difference between IIR and FIR is determined by the runtime software by the number of coefficients
loaded (>10 SOS = FIR).

7.8.4.4 Associated EPICS Records

Same as cdsFilt module.

7.8.5 Input Filter (Single Pole / Single Zero (SPSZ) with EPICS control)

This filter module uses pole/zero settings from EPICS.

LIGO LIGO-T080135-v9

 85

7.8.5.1 Function

Provides a single pole, single zero filter function, with input settings provided via EPICS.

7.8.5.2 Usage

7.8.5.3 Operation

Given:
• Overall high frequency gain = K

• Z and P are in Hz.

• Fs = code sampling frequency

Calculation:

a = (1-πP/fs)/(1+πP/fs)

b = (1-πZ/fs)/(1+πZ/fs)

val = K * (Input + Offset)

output = val – (b * val_previous) + (a * input_previous)

7.8.5.4 Associated EPICS Records

1) _OFFSET : Input offset value
2) _TRAMP: Ramp time, in seconds
3) _K: Gain term
4) _P: Pole term
5) _Z: Zero term
6) _Load: Momentary switch that starts load of new settings over the time specified by

TRAMP.

7.8.5.5 Auto-Generated MEDM Screens

As shown in figure above.

LIGO LIGO-T080135-v9

 86

7.8.6 RMS Filter

7.8.6.1 Function

This block computes the RMS value of the input signal.

7.8.6.2 Usage

This module is used to calculate an RMS value.

7.8.6.3 Operation

The output value is the RMS value of the input value, within the limits of
±2000 counts.

7.8.6.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v9

 87

7.8.7 True RMS Filter

7.8.7.1 Function

This block computes the RMS value of the input signal. It takes the root mean square value of a
number of samples equal to the window_size parameter.

7.8.7.2 Usage

After placing the part in the user model, adjust the window_size parameter in the block properties
description field. The window-size = number of code cycles over which to calculate the RMS value.

LIGO LIGO-T080135-v9

 88

7.8.8 Test Point

7.8.8.1 Function

The test point part allows the definition of a GDS test point anywhere in
the model without having to use a “Filter Module” part.

7.8.8.2 Usage

The desired test point signal is connected to the part input and given an
appropriate signal name.

7.8.8.3 Operation

The test point variable will be set equal to the input variable at the full
rate of the compiled code. Upon request, this value will become available to the real-time data
acquisition software for transmission to the DAQ system.

Note: These signals are also available to be assigned as DAQ channels at user defined rates.

7.8.8.4 Associated EPICS Records

None.

LIGO LIGO-T080135-v9

 89

7.8.9 Excitation

7.8.9.1 Function

Provide an input from the GDS arbitrary waveform generator at any point
within a user model without having to use a filter module.

7.8.9.2 Usage

Connect output to any model part with a signal input.

7.8.9.3 Operation

Upon selection via one of the GDS tools, the real-time DAQ process will inject a signal from the
arbitrary waveform generator into this variable. If not selected, the output is always zero (0.0).

LIGO LIGO-T080135-v9

 90

7.9 Matrix Parts

Matrix parts are those which perform calculations based on array data. The most commonly used is
the cdsMuxMatrix part.

LIGO LIGO-T080135-v9

 91

7.9.2 cdsMuxMatrix

7.9.2.1 Function

The primary function of this block is to produce output signals based on
the scaling and addition of various input signals.

7.9.2.2 Usage

Inputs are connected via the Mux part and outputs are connected via the
Demux part. The number of connections available at the input/output
may be modified to any size by double clicking on the Mux/Demux parts
and modifying the number of connection fields in the pop-up window.

7.9.2.3 Operation

Basic code function is:

Output[1] =

 Input[1] * Matrix_11 + Input[2] * Matrix_12 + Input[n] * Matrix_1n, where Matrix_xx is an
EPICS entry field.

7.9.2.4 Associated EPICS Records

The RCG will produce an A x B matrix of EPICS records for use as input variables, where B is the
number of inputs and A is the number of outputs. The EPICS record names will be in the form of
PARTNAME_AB, starting at PARTNAME_11.

7.9.2.5 Auto-Generated MEDM Screen

For each matrix defined in a model, a matrix screen is automatically generated, as in the following
example screen. By default, matrix elements which are set to 0.0 have their backgrounds set to gray.
Any other value results in a green background.

LIGO LIGO-T080135-v9

 92

LIGO LIGO-T080135-v9

 93

7.9.4 cdsRampMuxMatrix

A new matrix part has been added which provides a smooth
spline ramping over a user-defined time to load new settings.
Operation is perhaps best explained using the example
MEDM screens that follow. For this example, a 4x4 matrix
has been defined in the model. The RCG produces screens
similar to these during compile/install.

As seen in these MEDM screens, there are several new features:

• Two matrix element display areas:
o Left side allows entry of new values.
o Right side shows matrix as presently loaded into the real-time code (readback

channels).

• LOAD MATRIX: Settings entered by the user are not loaded to the real-time code until this
load is executed. This allows the user to set in a series of new settings prior to them being
passed to the real-time code.

• TIME: Time, in seconds, to ramp the values to be loaded into the real-time matrix from the
settings once load is executed. This is a spline ramping function, identical to that used to ramp
settings in IIR filter modules.

In this example, the first screen shot shows three (3) non-zero values in the settings area, which match
the matrix read back channels from the RT code. All three settings/readings have a green background
to indicate that they are identical.

In the second view, two settings have been changed, and the read back channels do not match, as
indicated by the red background. This is the case where new settings have been entered, but the
LOAD has not yet been executed.

LIGO LIGO-T080135-v9

 94

Once the LOAD is executed, the settings/read back channels will have yellow backgrounds while
ramping is occurring, as shown in the following screen shot. Once ramping is completed, all non-
zero settings/read back channels should go back to green.

LIGO LIGO-T080135-v9

 95

7.9.5 cdsFiltMuxMatrix

7.9.5.1 Function

7.9.5.2 Usage

7.9.5.3 Operation

7.9.5.4 Associated EPICS Records

7.9.5.5 Auto-Generated MEDM Screen

LIGO LIGO-T080135-v9

 96

7.9.6 cdsBit2Word/cdsWord2Bit

7.9.6.1 Function

The purpose of these two blocks is to convert from 16
single bit inputs to one 16-bit output word
(cdsBit2Word) and from one 16-bit input word to 16
single bit outputs (cdsWord2Bit), respectively.

7.9.6.2 Usage

For cdsBit2Word, connect 16 binary inputs to ‘B0’
through ‘B15’, with the least significant bit connected to
'B0', the second least significant bit connected to ‘B1’,
etc., and connect ‘Out’ to the module that should receive
the 16-bit output word.

For cdsWord2Bit, connect the module that supplies the
16-bit input to ‘In’ and 16 binary outputs to ‘B0’ through
‘B15’, with the least significant bit connected to ‘B0’,
the second least significant bit connected to ‘B1’, etc.

7.9.6.3 Operation

cdsBit2Word will calculate the output as Out = B0 * 1 + B1 * 2 + B2 * 4 + ... + B15 * 32,768 (i.e.,

Out = B0 * 2**0 + B1 * 2**1 + B2 * 2**2 + ... + B15 * 2**15), where B0 through B15 are equal to
1 or 0, e.g., if the binary inputs connected to B1, B2, B5, and B12 are equal to one and all other
binary inputs are equal to zero, then the output (16-bit) word would be equal to (1 * 2 + 1 * 4 + 1 *
32 + 1 * 4,096 =) 4,134.

cdsWord2Bit will convert the 16-bit (integer) input, ‘In’, into 16 bits, e.g., the ‘In’ value 33,609 will
result in the following bit pattern on the output: B15 = 1, B14 = 0, B13 = 0, B12 = 0, B11 = 0, B10
= 0, B9 = 1,

B8 = 1, B7 = 0, B6 = 1, B5 = 0, B4 = 0, B3 = 1, B2 = 0, B1 = 0, and B0 = 1.

7.9.6.4 Associated EPICS Records

LIGO LIGO-T080135-v9

 97

7.11 WatchDogs

Watchdogs are used to monitor their input signals and produce an error signal at their output to
automatically trigger some fault handling code/modules. The modules to date were designed to
implement similar tasks in initial LIGO controls.

LIGO LIGO-T080135-v9

 98

7.11.2 WD

This part was developed to provide watchdog protection for aLIGO large optics. A further description
of this part and its usage can be found in LIGO-G1200172.

7.11.2.1 Function

This part is designed to monitor the six OSEMs of the top stage of a Quad
suspension. It is built upon two subsystem SimuLink blocks, as shown
in the following figures. This part is maintained with the CDS core code
library to avoid alteration by application developers, as it is used for
hardware safety purposes.

The first figure is a breakout of the top level. It shows the outputs of six
individual OSEM monitors and how they are combined to produce a
single watchdog trip output. The second figure shows the details of the
individual OSEM monitor parts.

7.11.2.2 Usage

OSEM inputs 1 through 6 connect to the desired OSEM sensor signals. The RESET line provides a
method to reset the filters associated with the DC and RMS filters used within the OSEM monitors.
In practice, this is typically connected to the RESET output of a DACKILL part.

The output, WD, is a fault indicator, where 1=OK and 0=FAULT.

LIGO LIGO-T080135-v9

 99

Figure 7: Six OSEM Monitoring Block

LIGO LIGO-T080135-v9

 100

Figure 8: Single OSEM Monitoring Block

LIGO LIGO-T080135-v9

 101

7.11.3 WD2

In preparation for a possible change in the suspension watchdog (SWD)
chains, a variation of the original SWD part (WD2) has been added to
CDS_PARTS. This new part has two outputs, instead of one:

• WD_RMS – The RMS Fault (0) or OK (1) output.

• WD_DC – The DC path Fault (0) or OK (1) output.

The purpose is to allow the application developer to determine which
outputs to use to trigger fault indications and/or corrective action code,
such as when connected to a DacKill part.

The internals of this part are shown in the following figure. Instead of
ANDing together both DC and RMS paths, as done with the WD part, this
part performs a separate AND for RMS and DC paths.

Figure 9: Generation of separate DC and RMS trip outputs

LIGO LIGO-T080135-v9

 102

7.11.4 cdsDacKill

7.11.4.1 Function

The purpose of this part is force the code to output a zero (0) value to all DAC channels defined in
the model, regardless of the actual application code requested value. This part typically receives a
fault condition input from user specified fault monitoring logic/code within the RCG model.

NOTE: Only one (1) DacKill part may exist in a given RCG model.

7.11.4.2 Usage

This part has two inputs and two outputs, as described below. Input connections are required, but
output connections are optional.

Inputs

1) Signal (0 = Fault, 1 = OK)
2) Bypass Time (Number of seconds WD can be bypassed)

Outputs

1) Watchdog Status (0 = Tripped, 1 = OK, 2 = Bypassed
2) Reset (Held HIGH (1) for one code cycle when WD reset. This output is intended for use
within the user model to reset any fault detection code/logic.

7.11.4.3 Operation

This part has three defined states, as described in the following subsections.

7.11.4.3.1 MONITOR State

In this state, the code monitors the Sig input. As long as this input is one (1), all DAC outputs are
sent as calculated by the user application. If the Sig input goes to zero (0), the code state will go to
FAULT.

To achieve this state requires two things:

1) Sig input must be set to one (1)
2) After 1 above, a reset must be sent via the EPICS RESET channel (see next section).

On code startup, the default condition of the DacKill part is “FAULT”, and requires the above two
conditions to clear the fault condition.

7.11.4.3.2 FAULT State

A fault state is entered when:

1) Application containing this part is first started, regardless of the Sig input value.
2) Sig input is zero and code is not presently in Bypass state.

LIGO LIGO-T080135-v9

 103

3) Panic input is set to one via the EPICS PANIC input.

In this state, DAC outputs are set to zero. Which DAC channels are set to zero is dependent on the
code model type:

1) IOP: All channels of all DAC modules connected to the computer will be set to zero.
2) User Application: Only those DAC channels defined in the user application will be set to

zero. For example, if two user applications (app1 and app2) are sharing channels on the
same DAC module, and the Sig input goes to zero only in app1, then:

a. DAC channels defined by app1 will go to zero
b. Those defined by app2 will continue to function normally

Note that once in this state, it will become “latched” ie even if the Sig input returns to one (OK), a
RESET will be required to return to the MONITOR state. This state is also maintained as long as the
PANIC input from EPICS is set to one.

7.11.4.3.3 BYPASS State

Entering this state requires:

1) PANIC is not set to one, via the PANIC EPICS
channel

2) BPSET EPICS channel momentarily set to one.

While in this state, the Sig input is ignored and all DAC
channel outputs will continue to be passed normally from
the user application code until either:

1) Bypass time expires. Note that once in the
Bypass state, all further BPSET requests are
ignored ie one cannot force reset of the Bypass
timer and thereby extend the Bypass time. Once
the timer has expired, the code will return to the
MONITOR state (no RESET required).

2) EPICS PANIC is set to one. This will force the
Bypass timer to be cleared and code to go to the
FAULT state.

7.11.4.4 Associated EPICS Records

- Three EPICS Input Channels

1) _RESET: Momentary that:
- a) Clears Trip State, if, and only if, Sig Input = OK
- b) Turns OFF WD Bypass Mode
- c) Sends 1 to RST output

2) _BPSET: (Momentary) Turns ON Bypass mode (all DAC outputs enabled) for number of
seconds specified at Bypass Time input. During this time, the WD ignores Sig Input.
3) _PANIC: Binary input, trips and holds WD in a trip condition until PANIC turned OFF
(0). Also clears BPSET, such that WD will not come back up in Bypass mode when PANIC
turned OFF.

- Two EPICS Output Channels

 1) _STATE: The part output (wD) status:

LIGO LIGO-T080135-v9

 104

 a. 0 = Tripped (Fault)
 b. 1 = OK
 c. 2 = In BYPASS Mode
 2) _BPTIME: Amount of time, in seconds, remaining on the bypass timer when in bypass
mode.

LIGO LIGO-T080135-v9

 105

7.11.6 cdsDacKillIop

7.11.6.1 Function

A new DACKILL part has been added to the library for RCG V2.8,
DACKILL_IOP (DKIOP). This part is intended to more closely
resemble the operation of the suspension system hardware watchdog
system. It is presently only supported for use in IOP models.

Information on the motivations for the development of this part,
which is an extension of the basic DACKILL (DK) part, can be
found at https://awiki.ligo-
wa.caltech.edu/aLIGO/SeiSusWatchDogCommissioning

7.11.6.2 Usage

This part has two inputs and two outputs, as described below. Input connections are required, but
output connections are optional.

Inputs

1) Signal (0 = Fault, 1 = OK)
2) Bypass Time (Number of seconds WD can be bypassed)

Outputs

1) Watchdog Status (0 = Tripped, 1 = OK, 2 = Bypassed
2) Reset (Held HIGH (1) for one code cycle when WD reset. This output is intended for use
within the user model to reset any fault detection code/logic.

7.11.6.3 Operation

7.11.6.3.1 Overview

The DKIOP part operates similar to the suspension system hardware watchdog. This part provides
the ability to implement a two step process in attempting to clear a fault condition:

1) First trip: Set WD output to fault (0). This allows for the connection of code designed to take
corrective action. In the particular case of the aLIGO SUS to SEI watchdog, this output is
sent to the appropriate SEI controls IOP to shutdown HPI and ISI control outputs for that
particular chamber, while allowing the SUS controls to remain operational.

2) Second trip: If corrective action taken by code initiated through connection to WD output has
not cleared the problem, then shutdown the local DAC outputs for those DAC modules
assigned to this DKIOP part.

https://awiki.ligo-wa.caltech.edu/aLIGO/SeiSusWatchDogCommissioning
https://awiki.ligo-wa.caltech.edu/aLIGO/SeiSusWatchDogCommissioning

LIGO LIGO-T080135-v9

 106

7.11.6.3.2 Details

• A fault indication (0) must be present at Sig input consistently for the duration of time, in
seconds, as set by the WD Trip Time input before any action is taken. If the fault indication
is removed prior to this time, the timer is reset to start again on the next fault indication.

• Once the WD Trip timer expires:
o WD output goes to zero (Fault). This output is latched in the fault condition ie a

clearing of a fault indication at the Sig input at this point will not clear the fault nor
reset the WD timer.

o DAC outputs continue normal operation.
o Second fault timer is started, based on time, in seconds, as defined at the DAC Trip

Time Input.
▪ Removal of a fault indication at Sig input will reset this timer to begin again

on the next fault indication. Therefore, if the corrective action taken by code
initiated by the WD fault output is successful, then the shutdown of DAC
module outputs is prevented.

• Once the DAC Trip timer expires:
o Outputs of all defined DAC modules are set, and latched, to zero.
o Removal of fault indication at Sig input will not clear this, nor the WD fault output.

▪ Requires DKIOP Reset command and clearing of fault indication at Sig input
to clear the trip condition.

7.11.6.3.3 Example Use in SUS to SEI Watchdog

As an example of how the DKIOP might be used in the h1iopsush34 model, connecting to the
h1iopseih23 model, is shown in the following figures.

In Figure 1, a portion of the h1iopsush34 model is shown. The suspensions in HAM3, MC2 and PR2,
have their watchdogs connected to DKIOP HAM3. The WD output of this DKIOP would be
connected to an IPC part (not shown) to send the signal to the seismic system IOP. The SR2
suspension, located in HAM4, has its watchdog connected to DKIOP HAM4.

Figure 2 shows the DKIOP components of h1seih23. The input to its DKIOP HAM3 would be
received via the IPC connection made in the SUS IOP.

Given the parameters shown in this example, the shut down sequence would be:

• In h1iopsush34 controller:
o On fault indication from either PR2_WD or MC2_WD, the DKIOP HAM3 would

start its WD timer (set to 600 sec, or 10 minutes, in example).
o If fault exists beyond the 10 minutes, the WD output will go to fault condition (0

output), which is sent to via IPC to DKIOP HAM3 in seismic system IOP.

• In h1iopseih23 controller:
o After 1 second, the HAM3 WD output of the seismic system IOP will go to fault (0).
o After 2 seconds, the HAM3 DKIOP of seismic system will disable all DAC channels

outputs to DAC module 1. This, in turn, will shutdown the HEPI and ISI controls to
HAM3.

• In h1iopsush34 controller:
o If the shutdown of HEPI and ISI in HAM3 has not resulted in the clearing of fault

signals from either PR2 or MC2 within 900 seconds (15 minutes) after the DKIOP

LIGO LIGO-T080135-v9

 107

HAM3 WD output was set to fault, then zero out the drives to the this model’s DAC
card 0.

Figure 10: Example h1iopsush34 model

LIGO LIGO-T080135-v9

 108

Figure 11: Example h1iopseih23 model

7.11.6.4 Associated EPICS Records

- Three EPICS Input Channels

1) _RESET: Momentary that:
- a) Clears Trip State, if, and only if, Sig Input = OK
- b) Turns OFF WD Bypass Mode
- c) Sends 1 to RST output

2) _BPSET: (Momentary) Turns ON Bypass mode (all DAC outputs enabled) for number of
seconds specified at Bypass Time input. During this time, the WD ignores Sig Input.
3) _PANIC: Binary input, trips and holds WD in a trip condition until PANIC turned OFF
(0). Also clears BPSET, such that WD will not come back up in Bypass mode when PANIC
turned OFF.

- Two EPICS Output Channels

 1) _STATE: The part output (wD) status:

LIGO LIGO-T080135-v9

 109

 a. 0 = Tripped (Fault)
 b. 1 = OK
 c. 2 = In BYPASS Mode
 2) _BPTIME: Amount of time, in seconds, remaining on the bypass timer when in bypass
mode.

LIGO LIGO-T080135-v9

 110

7.11.8 DacKillTimed

The functionality of this part is similar to the
DacKillIOP part. The primary differences are:

1) It may be used in either an IOP or user
application model.
2) Like the original DacKill part, it will cause the
shutdown of all DAC channels defined in the model ie
does not have DAC module assignment capability that
the DacKillIop part does.

Item 2 actually makes it more suitable for use within a
user model, as it will direct the DAC outputs to zero
only for those channels used by the model instead of
entire DAC modules.

LIGO LIGO-T080135-v9

 111

7.13 DAQ Parts

7.13.1.1 Function

The function of this part is to define model
channels that are to be sent to the DAQ system
for data storage.

7.13.1.2 Usage

This part may be placed at any level within an
RCG model.

7.13.1.2.1 RCG Releases prior to RCG V2.6

Entries must be made as:

ChannelName AcquisitionRate

All data channels are recorded as 32bit floating point type.

7.13.1.2.2 RCG V2.6

In V2.6, support was added for acquiring unsigned int (UINT32) type data. Channels to be recorded
as this type must have an additional entry added, as shown above (uint32).

7.13.1.2.3 RCG V2.7 and later

In V2.7, support was added to record two types of data frames simultaneously:

- Commissioning frames: Contain all of the data indicated in the DAQ Channel part.
- Science Frames: Contain only those channels indicated by an asterisk (*) at the end of the

name, such as ADC_FILTER_1_OUT* in the example above.

Note that all EPICS channels are still recorded in both frame types.

The reason for two frames was to allow commissioners to record more data channels in the short
term on CDS local disk, necessary for commissioning activities, but not important for long term data
archive and scientific analysis. In this manner, it is hoped to keep the long term storage costs down.

7.13.1.3 Operation

During the code installation process, these channels will be set within the MODELNAME.ini file to
acquire data at the desired rate. This file is used by both the RT runtime code and the DAQ system
to determine which channels are to be recorded and at what rate.

The UINT data type was added primarily to support recorded of system state words. In V2.6, down
sampling of UINT32 type data is done by simply recording every nth sample. Beginning with V2.7,
down sampling is done by performing an AND function. For example, if recording rate is set to 256
and code runs at 2048, an AND is performed on 8 samples for each sample recorded. In this manner,
it is possible to capture those bits which may have changed over the number of range of down
sampled values.

LIGO LIGO-T080135-v9

 112

7.14 RT Links

In RCG V2.8, a new subsystem block has been added to the CDS_PARTS.mdl. This subsystem block
contains parts which provide access to values already calculated by the real-time code, but formally
unavailable to the real-time application.

LIGO LIGO-T080135-v9

 113

7.14.1 GPS

A part has been added to provide the current GPS time, in seconds, at the output.

7.14.2 ODC State Word

To further support On-line Detector Characterization (ODC), a part is provided that outputs a set of
status information. This part has three, single bit outputs, updated on every real-time code cycle.

• ADC_OVF = Overflow condition exists on one, or more, ADC
channels being used by the application.

• DAC_OVF = Overflow condition exists on one, or more, DAC
channels in use by this application.

• EXC_ON = One, or more, GDS Excitation signal is actively
injecting a signal to this application. Note that this bit is not set if
the excitation signal channel is simply being read, as by
Dataviewer.

7.14.3 Model_Rate

This part outputs the defined rate at which the code is running eg 2048, 16384, etc.

	1 Introduction
	2 Document Overview
	3 References:
	4 RCG Overview
	4.1 Software Installation
	4.2 Code Development
	4.3 Code Generator
	4.4 Run-time Software
	4.4.1 Real-Time
	4.4.1.1 IOP
	4.4.1.2 User Application

	4.4.2 Non-Real-time

	5 RCG Application Development
	5.1 General Rules and Guidelines
	5.2 Code Compilation and Installation
	5.2.1 Standard Compile and Install Using CDS RTS Package
	5.2.2 Compile and Install Using RCG from GIT Repository
	5.2.3 RCG Install Products

	6 Running the RCG Application
	6.1 Application Startup
	6.1.1 Using rtcds command
	6.1.2 Using systemctl command

	6.2 Runtime Processes
	6.2.1 Control Application Processes
	6.2.2 DAQ Processes
	6.2.2.1 Local DC
	6.2.2.2 DAQ Ethernet Connection

	6.3 Runtime Diagnostics
	6.4 Additional Run Time Tools

	7 RCG Software Parts Library
	7.1 Top Level
	7.1.1 cdsParameters
	7.1.1.1 Function
	7.1.1.2 Usage
	7.1.1.2.1 IOP Parameter Block Settings
	7.1.1.2.1.1 Long Range IOP Configuration
	7.1.1.2.1.2 Running IOP at 128K
	7.1.1.2.1.3 Operation without a LIGO standard timing system
	7.1.1.2.1.4 High speed ADC support
	7.1.1.2.1.5 Additional IOP Options

	7.1.1.2.2 CAM Parameter Block Settings
	7.1.1.2.3 Parameter Block Options Common to both IOP and CAM

	7.1.1.3 Operation
	7.1.1.4 Associated EPICS Records

	7.2 C Code
	7.2.1 cdsFunctionCall
	7.2.1.1 Function
	7.2.1.2 Usage
	7.2.1.3 Operation
	7.2.1.4 Associated EPICS Records
	7.2.1.5 Auto-Generated MEDM Screens

	7.3 I/O Parts
	7.3.1 ADC
	7.3.1.1 Function
	7.3.1.2 Usage
	7.3.1.3 Operation
	7.3.1.4 Associated EPICS Records
	7.3.1.5 Auto-Generated MEDM Screen

	7.3.2 ADC Selector
	7.3.2.1 Function
	7.3.2.2 Usage
	7.3.2.3 Operation
	7.3.2.4 Associated EPICS Records

	7.3.3 DAC Modules
	7.3.3.1 Function
	7.3.3.2 Usage
	7.3.3.3 Operation
	7.3.3.4 Associated EPICS Records
	7.3.3.5 Auto-Generated MEDM Screens

	7.3.4 cdsDio
	7.3.4.1 Function
	7.3.4.2 Usage
	7.3.4.3 Operation
	7.3.4.4 Associated EPICS Records
	7.3.4.5 Auto-Generated MEDM Screens

	7.3.5 cdsRio and cdsRio1 –
	7.3.5.1 Function
	7.3.5.2 Usage
	7.3.5.3 Operation
	7.3.5.4 Associated EPICS Records
	7.3.5.5 Auto-Generated MEDM Screens

	7.3.6 cdsIPCx_PCIE, cdsIPCx_RFM, and cdsIPCx_SHMEM
	7.3.6.1 Function
	7.3.6.2 Usage
	7.3.6.3 Operation
	7.3.6.4 Associated EPICS Records
	7.3.6.5 Auto-Generated MEDM Screens

	7.3.7 cdsCDO32
	7.3.7.1 Function
	7.3.7.2 Usage
	7.3.7.3 Associated EPICS Records
	7.3.7.4 Auto-Generated MEDM Screen

	7.3.8 cdsCDIO1616 and cdsDIO6464
	7.3.8.1 Function
	7.3.8.2 Usage
	7.3.8.3 Operation
	7.3.8.4 Associated EPICS Records
	7.3.8.5 Auto-Generated MEDM Screen

	7.4 Simulink Parts
	7.4.1 Unit Delay
	7.4.1.1 Function
	7.4.1.2 Usage
	7.4.1.3 Operation
	7.4.1.4 Associated EPICS Records

	7.4.2 Subsystem Part
	7.4.2.1 Function
	7.4.2.2 Usage
	7.4.2.3 Operation
	7.4.2.4 Associated EPICS Records

	7.4.3 MathFunction
	7.4.3.1 Function
	7.4.3.2 Usage
	7.4.3.3 Operation
	7.4.3.4 Associated EPICS Records
	7.4.3.5 Code Examples

	7.4.4 In-line (math) function
	7.4.4.1 Function
	7.4.4.2 Usage
	7.4.4.3 Operation
	7.4.4.4
	Associated EPICS Records
	7.4.4.5 Code Examples

	7.4.5 From/Goto
	7.4.5.1 Function
	7.4.5.2 Usage
	7.4.5.3 Operation

	7.4.6 Bus Creator / Bus Selector
	7.4.6.1 Function
	7.4.6.2 Usage

	7.5 EPICS Parts
	7.5.1 cdsEpicsOutput/cdsEpicsIn
	7.5.1.1 Function
	7.5.1.2 Usage
	7.5.1.3 Operation
	7.5.1.4 Associated EPICS Records
	7.5.1.5 Setting EPICS Database Fields

	7.5.2
	7.5.3 EpicsInCtrl
	7.5.3.1 Function
	7.5.3.2 Usage
	7.5.3.3 Operation
	7.5.3.4 Associated EPICS Records

	7.5.4
	7.5.5 cdsEpicsBinIn
	7.5.5.1 Function
	7.5.5.2 Usage
	7.5.5.3 Operation
	7.5.5.4 Associated EPICS Records

	7.5.6 cdsRemoteIntlk
	7.5.6.1 Function
	7.5.6.2 Usage
	7.5.6.3 Operation
	7.5.6.4 Associated EPICS Records

	7.5.7 cdsEzCaRead/cdsEzCaWrite
	7.5.7.1 Function
	7.5.7.2 Usage
	7.5.7.3 Operation
	7.5.7.4 Associated EPICS Records
	7.5.7.5 Code Examples

	7.5.8 EPICS Momentary
	7.5.8.1 Function
	7.5.8.2 Usage
	7.5.8.3 Operation
	7.5.8.4 Associated EPICS Records

	7.6 Osc/Phase
	7.6.1 cdsPhase
	7.6.1.1 Function
	7.6.1.2 Usage
	7.6.1.3 Operation
	7.6.1.4 Associated EPICS Records

	7.6.2 cdsWfsPhase
	7.6.2.1 Function
	7.6.2.2 Usage
	7.6.2.3 Operation
	7.6.2.4 Associated EPICS Records

	7.6.3 cdsOsc
	7.6.3.1 Function
	7.6.3.2 Usage
	7.6.3.3 Operation
	7.6.3.4 Associated EPICS Records

	7.6.4 cdsSatCount
	7.6.4.1 Function
	7.6.4.2 Usage
	7.6.4.3 Operation
	7.6.4.4 Associated EPICS Records

	7.6.5 cdsNoise

	7.7
	7.8 Filters
	7.8.1 CDS Standard IIR Filter Module
	7.8.1.1 Function
	7.8.1.2 Usage
	7.8.1.3 Operation
	7.8.1.3.1 Input Section
	7.8.1.3.2 Filtering Section
	7.8.1.3.3 Output Section

	Associated EPICS Records
	7.8.1.4 Auto-Generated MEDM Screens

	7.8.2 IIR Filter Module with Control
	7.8.2.1 Function
	7.8.2.2 Usage
	7.8.2.3 Operation
	7.8.2.4 Associated EPICS Records
	7.8.2.5 Auto-Generated MEDM Screens

	7.8.3 IIR Filter Module with Control 2
	7.8.3.1 Function
	7.8.3.2 Detailed Description
	7.8.3.3 Usage
	7.8.3.4 EPICS Database Records
	7.8.3.5 Auto-Generated MEDM Screen

	7.8.4 PolyPhase FIR Filter
	7.8.4.1 Function
	7.8.4.2 Usage
	7.8.4.3 Operation
	7.8.4.4 Associated EPICS Records

	7.8.5 Input Filter (Single Pole / Single Zero (SPSZ) with EPICS control)
	7.8.5.1 Function
	7.8.5.2 Usage
	7.8.5.3 Operation
	7.8.5.4 Associated EPICS Records
	7.8.5.5 Auto-Generated MEDM Screens

	7.8.6 RMS Filter
	7.8.6.1 Function
	7.8.6.2 Usage
	7.8.6.3 Operation
	7.8.6.4 Associated EPICS Records

	7.8.7 True RMS Filter
	7.8.7.1 Function
	7.8.7.2 Usage

	7.8.8 Test Point
	7.8.8.1 Function
	7.8.8.2 Usage
	7.8.8.3 Operation
	7.8.8.4 Associated EPICS Records

	7.8.9 Excitation
	7.8.9.1 Function
	7.8.9.2 Usage
	7.8.9.3 Operation

	7.9 Matrix Parts
	7.9.1
	7.9.2 cdsMuxMatrix
	7.9.2.1 Function
	7.9.2.2 Usage
	7.9.2.3 Operation
	7.9.2.4 Associated EPICS Records
	7.9.2.5 Auto-Generated MEDM Screen

	7.9.3
	7.9.4 cdsRampMuxMatrix
	7.9.5 cdsFiltMuxMatrix
	7.9.5.1 Function
	7.9.5.2 Usage
	7.9.5.3 Operation
	7.9.5.4 Associated EPICS Records
	7.9.5.5 Auto-Generated MEDM Screen

	7.9.6 cdsBit2Word/cdsWord2Bit
	7.9.6.1 Function
	7.9.6.2 Usage
	7.9.6.3 Operation
	7.9.6.4 Associated EPICS Records

	7.10
	7.11 WatchDogs
	7.11.1
	7.11.2 WD
	7.11.2.1 Function
	7.11.2.2 Usage

	7.11.3 WD2
	7.11.4 cdsDacKill
	7.11.4.1 Function
	7.11.4.2 Usage
	7.11.4.3 Operation
	7.11.4.3.1 MONITOR State
	7.11.4.3.2 FAULT State
	7.11.4.3.3 BYPASS State

	7.11.4.4 Associated EPICS Records

	7.11.5
	7.11.6 cdsDacKillIop
	7.11.6.1 Function
	7.11.6.2 Usage
	7.11.6.3 Operation
	7.11.6.3.1 Overview
	7.11.6.3.2 Details
	7.11.6.3.3 Example Use in SUS to SEI Watchdog

	7.11.6.4 Associated EPICS Records

	7.11.7
	7.11.8 DacKillTimed

	7.12
	7.13 DAQ Parts
	7.13.1.1 Function
	7.13.1.2 Usage
	7.13.1.2.1 RCG Releases prior to RCG V2.6
	7.13.1.2.2 RCG V2.6
	7.13.1.2.3 RCG V2.7 and later

	7.13.1.3 Operation

	7.14 RT Links
	7.14.1 GPS
	7.14.2 ODC State Word
	7.14.3 Model_Rate

