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We observed the effect of radiation pressure on the angular sensing and

control system of the Laser Interferometer Gravitational-Wave Observatory

(LIGO) interferometer’s core optics at LIGO Hanford Observatory. This is

the first measurement of this effect in a complete gravitational wave interfer-

ometer. Only one of the two angular modes survives with feedback control,

since the other mode is suppressed when the control gain is sufficiently large.

We developed a mathematical model to understand the physics of the system.

This model matches well the dynamics that we observe.
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1. Gravitational wave interferometers

Gravitational wave detection technology has made great strides in recent years, and more

progress is expected in the near future. In the U.S., the LIGO project has constructed

several large interferometers, two at Hanford WA and another one at Livingston LA [1, 2].

These initial LIGO interferometers were used to make observations of unprecedented

sensitivity during the period November 2005 through September 2007, LIGO’s fifth science

run, during which one year’s worth of triple coincident data were collected at an rms strain

sensitivity of about 10−21 [3–5]. The LIGO Scientific Collaboration (LSC) is now completing

the analysis of these data. Operation of LIGO and analysis of gravitational wave data are

closely coordinated with two European projects, GEO (a British-German collaboration with

an 0.6 km interferometer near Hannover [6]) and Virgo (a French-Italian collaboration with

a 3 km interferometer near Pisa [7]).

Striking as this technological progress is, it is widely expected that sensitivity improvement

of about a factor of ten in strain amplitude will be required before observations of gravita-

tional waves become routine. Fortunately, the technology to make the required improvement

is in hand. For LIGO, those improvements will be embodied in Advanced LIGO, now

under construction and expected to begin operations around 2015 [8]. In the meantime,

one additional data run is being carried out with improved initial LIGO hardware. This

incremental improvement, called Enhanced LIGO, has already started its science run.

The challenge of gravitational wave detection is that the signals are tiny – differential strains

in two perpendicular direction with amplitudes below 10−21. A Michelson interferometer is

well suited to detecting a differential strain, but it needs extraordinary sensitivity. LIGO

has addressed the sensitivity as follows [1, 2] (Other interferometers have solutions that are

similar in most features but differ in details.). LIGO’s interferometers have arms that are 4

kilometers in length (The second of the two interferometers at LIGO Hanford Observatory
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is only 2 kilometers long.). The 10 kg mirrors are suspended as carefully engineered

pendulums, which are in turn connected to multi-stage seismic isolation systems. A high

power Nd:YAG laser (with a power of 10 W) is used to provide sufficient optical power

to reduce the phase noise due to photon shot noise. The simple Michelson interferometer

configuration is augmented by several features that substantially enhance efficiency. Each

arm is made up of a Fabry-Perot cavity held on resonance, thus amplifying the phase

shift by a factor of F/π (the cavity’s finesse F is about 200). The effective laser power

is enhanced by an additional factor of about 50 by placing a partly transmitting mirror

between the laser and the rest of the interferometer; the combination of this recycling mirror

and the rest of the interferometer forms an additional Fabry-Perot cavity (power recycling

cavity) that is held on resonance [9]. The whole system is enclosed in a vacuum system held

at 10−8 torr (See the schematic diagram in Fig. 6.).

The use of such high laser power levels in resonant cavities means that radiation pressure

will play an important role in the operation of LIGO.

2. Role of radiation pressure in gravitational wave detectors

To understand the dynamics of the interferometers, we need to examine the power levels

of the actual LIGO design. Light arrives at the recycling mirror with a power of 5 W,

but, with the power recycling mirror held at the resonance condition, inboard of the

recycling mirror the effective power level hitting the interferometer’s beamsplitter is

250 W. Inside the resonant cavities that make up each of the long Michelson arms, the

power level is 12 kW. Thus, the radiation pressure on each of the arm mirrors is 10−4

N. Incident on a 10 kg mirror held in a pendulum suspension with resonant frequency

of 0.5 Hz, this force would cause a displacement of 10−6 m. Of course, a Michelson

interferometer with suspended mirrors only functions properly with a control system to

hold the mirrors at the proper longitudinal position and alignment; this control system
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acts to counteract the radiation pressure force. A coupling of radiation pressure to longi-

tudinal motion of the mirrors has been experimentally demonstrated by Mavalvala et al. [10].

Sidles and Sigg [11], building on earlier work by Solimeno et al. [12], pointed out that

torques due to radiation pressure can cause an interesting problem in interferometers with

suspended mirrors. They showed that the angular coupling between the mirrors due to

radiation pressure is best understood by considering the dynamics of a cavity as a set of

normal modes. At large enough radiation pressures, one of these modes can become unstable.

Although the LIGO detectors control not only longitudinal motion but also angular motion

of the mirrors, the servo bandwidth cannot be arbitrarily turned up due to noise coupling

into the gravitational wave output. Therefore, we need to have a detailed understanding of

the dynamics of this instability, in an interferometer with an angular control system.

In this paper, we first review the theory developed by Sidles and Sigg, giving a heuristic

understanding of the instability that they predicted. We point out that initial LIGO

operated successfully at power levels that would be expected to cause angular instability, if

one made a naive application of their theory. In the next section, we present a measurement

of the angular response to torque applied to a LIGO mirror, made under normal operating

conditions (and at other laser power levels as well.) The mirror response shows features

different from those expected by the theory as presented in reference [11].

The difference from the simple theory is not surprising, since a control system acts on the

mirrors of the interferometer. In order to derive the expected response, we modeled the

combined mechanical-optical-control system using Matlab and Simulink [13]. Section 5 of

the paper describes this model, and shows how our measurements agree with this more

complete theory of the dynamics of the system. In particular, we can now understand the

stability of initial LIGO at power levels at which instability was expected in an uncontrolled
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interferometer. Our measurements show that, inside the control system, the mirror’s angular

transfer function is indeed that of an unstable harmonic oscillator.

In the final section of the paper, we investigate how much the laser power can be increased

before the present control system would be overwhelmed by the radiation pressure instability.

3. Review of Sidles-Sigg instability

Consider an optical resonator that consists of two suspended mirrors and laser light which

resonates between the mirrors (Fig. 1). The sketch shows two mirrors, which have very large

radius of curvature (larger than the distance between two mirrors in LIGO detectors); the

optical axis is the line connecting the centers of curvature of the mirrors. The two mirrors

feel a natural restoring force that comes from the wire loop suspending them from the

suspension system.

When the cavity is resonant, radiation pressure from the laser in the cavity can become

important. With no light, each mirror exhibits independent torsional oscillations. When the

cavity is filled with light, there are two coupled modes of the opto-mechanical system. This

description can be applied either to the yaw mode or the pitch mode of the mirrors in the

cavity. The measurements described below were made in the yaw mode.

Suppose that the mirrors oscillate in such a way that the signs of mirror angles θ1, θ2 are

either (+,−) or (−,+). In this situation, radiation pressure works so as to enhance the

original restoring force by pushing the mirrors back to the original position as shown in

Fig. 2a, which means the mirrors experience a stronger restoring torque than that due to

the mechanical restoring torque alone. Thus, the eigenfrequency of this mode will be higher

than the original uncoupled pendulum natural frequency.
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On the other hand, suppose that both mirrors tilt in such a way that the sign of mirror

angle θ1, θ2 is either (+,+) or (−,−). In that situation, the radiation pressure works against

the original restoring force. Tilt angles in this pattern cause the beam to move sideways as

shown in Fig. 2b, which means that the net restoring force will be smaller than that due to

the mechanical restoring force alone. When the power inside the optical resonator exceeds a

critical value, the net restoring torque will become negative.

In order to investigate the dynamics of this system, we can apply an external torque to one of

the mirrors and determine the transfer function of the mirror’s angle to the applied torque.

The normalized transfer function will be

H(s) =
θ2

T
∼ − (s2 + ω2

z)

(s2 + ω2
−) (s2 + ω2

+)
. (1)

The two pairs of poles ω± and the pair of zeros ωz are given by

ω2
± = ω2

0 +
PL

Ic

− (g1 + g2)±
√

4 + (g1 − g2)
2

1− g1g2

 , (2)

ω2
z = ω2

0 −
2PL

cI

g2

1− g1g2

, (3)

where ω0 is the mechanical resonant frequency of the torsion pendulum, P is the laser power

inside the cavity, L is the length of the cavity, I is the moment of inertia of the mirror

(∼ 0.047 kg m2), and c is the speed of light. The factors g1 and g2 are the g parameters of

the cavity, defined by g1,2 = 1 − L�R1,2 (0.71, 0.45 respectively) where R1 and R2 are the

radii of curvature of the mirrors.
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Here is an intuitive justification of the transfer function, which describes the process of

shaking one of the mirrors and observing the response of that mirror. Since there are two

angular modes of the coupled system, one will see resonances at the two different frequencies

which correspond to the two pairs of poles ω±. Given the phase relations between these two

modes, there will be a frequency at which the mirror does not move at all. This frequency

corresponds to the pair of zeros ωz. If we observe the other mirror, however, the two modes

have a different phase relationship, and the pair of zeros does not appear in that other

transfer function.

As P , the laser power circulating inside the cavity, increases, ω+ increases, while ω− and ωz

decrease (See Fig. 3). Eventually, both ω2
− and ω2

z become negative, and the corresponding

poles and zeros become real. P1 and P2 in Fig. 3 are the powers that give ω2
− = 0

and ω2
z = 0, respectively. For initial LIGO, they are roughly P1 = 7.5 kW and P2 = 26.4

kW. A set of Bode diagrams are shown in Fig. 4, and a pole map of Eq. (1) is shown in Fig. 5.

When P = 0, the two mirrors are uncoupled. The transfer function must be that for a simple

torsion pendulum. When P is non-zero but sufficiently small, the two mirrors will be coupled

and thus the Bode diagram will have two peaks associated with the two pairs of poles and

one dip from the pair of zeros. In the s-plane, the two pairs of poles at s = ±iω0 denoted

by triangles in Fig. 5 split into non-degenerate pairs, one moving toward the origin and one

moving away. When P reaches P1, the pair associated with ω− reaches the origin, and for

higher powers those poles move along the real axis. When P reaches P2, above which ω2
z

becomes negative, the dip corresponding to ωz will disappear from the Bode diagram. The

filled circles in Fig. 5 are the poles at the operating laser power in initial LIGO. The existence

of the pole in the right half plane indicates instability. At P > P1, initial LIGO would be

unstable in the absence of an angular control system.
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4. Measurement

To study the radiation pressure effect, we made a set of measurements on one of the arm

cavities in the 4 km interferometer at LIGO Hanford Observatory. We wanted to study the

regime P > P1, as described above, so all control loops (including angular controls) were

engaged during the measurement. The angular sensing and control system [14–17] has ten

degrees of freedom. They are the pitch and yaw motion of the five core optics (the two pairs

of mirrors: (ITMX, ETMX) and (ITMY, ETMY) in the long Fabry-Perot cavities, and the

power recycling mirror (RM) located upstream of the Michelson interferometer, see Fig. 6.)

These degrees of freedom are measured by the quadrant photodetectors called wavefront

sensors [18, 19], and are controlled by electromagnetic actuators attached to the backs of

the mirrors. We reduce the ten degees of freedom to two by looking at only two wavefront

sensors which are sensitive to the differential degrees of freedom (i.e., ∆θETM = θ2− θ4, and

∆θITM = θ1 − θ3).

Besides these wavefront sensors for global angular sensing, there are sensors called optical

levers [20], which work only locally. An optical lever consists of a diode laser and a quadrant

photodiode which senses the position of the laser spot reflected by the mirror, and thus

allows a measurement of the angle of the mirror. We used the optical lever signal to monitor

the response of the mirror to angular excitation; this enabled us to measure the transfer

function H(s) that we investigated in the previous section.

In order to start the measurement, we first ensured that the interferometer was in its ordinary

operating condition, where the two arm cavities and the recycling cavity are resonant, and

the complete control system is engaged. Then, we injected an excitation signal into one of

the wavefront sensors’ control path that results in dithering the end test masses differentially.

During the excitation, we monitored the optical lever signal of the end mirror in the x-arm

and a signal which goes into the driver of the actuator attached to the mirror. Since the driver
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signal is proportional to the torque produced by the actuator, we were able to monitor the

transfer function of the mirror angle D to torque C applied to the same mirror, up to some

overall gain (see Fig.6). The transfer function is the direct analog of the one we introduced

in the previous section, i.e., the response of the ETMX mirror angle to the torque applied

to the mirror. In addition, we recorded signals from two points located just upstream A and

downstream B of the excitation point in the wavefront sensors control loop (see Fig.6). This

enables us to calculate the open loop transfer function of the control loop. We here call the

two transfer functions oplev(s) and olg(s) respectively.

oplev(s) =
D

C
(4)

olg(s) =
A

B
(5)

We made the measurement at three different input laser powers (0.8 W, 4.0 W, and 6.8

W.) [21]. In Fig. 7, the open symbols show the results of our measurements of the oplev(s)

transfer function, while in Fig. 8 they show our measurements of olg(s).

There are several surprising features in Fig. 7. Firstly, note that there is only one peak in

the transfer function at each laser power, whose frequency decreases as the laser power goes

up. This is something that we did not expect based on the naive model (i.e., the model

without any control loops). The predictions of the naive model, shown in Fig. 4, look quali-

tatively very different. Note also that, at the highest power level, a 180 degree phase lead

was observed. This was also surprising since it would usually indicate the system’s instability.
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5. Mathematical model

These observations led us to construct a more complete model of the system that explicitly

includes the dynamics of the angular control system. Fig. 9 shows the block diagram. The

most important parts of the control loop are the sensing matrix (labeled as a, b, c, d) and

the control matrix (B,C,D). Each wavefront sensor measures a combination of the angle

of the two mirrors (input and end mirrors); the signals are fed back to each mirror to

minimize the deflection angle. The sensing matrix is measured separately in advance by

shaking each mirror; the control matrix is determined by inverting the sensing matrix.

Besides the wavefront sensors for global angular sensing, there is also a local loop called

optical lever for each mirror, and a compensation loop to make the local loop invisible to

the wavefront sensors. All filter banks associated with the two wavefront sensors are built

into the model. The solid curves in Fig. 7 and Fig. 8 show the transfer functions calculated

by our models. The different colors in the plots denote different cavity laser power levels

in the model. They are blue for 1.6 kW, green for P = 7.0 kW, and red for P = 12.5 kW.

The agreement between the measurement and the model is very good. The only adjustable

parameter in the model is the cavity laser power. Knowing that the full interferometer has

many more degrees of freedom than are modeled here, such agreement is especially gratifying.

(The cavity power levels chosen in the figures are those which best represent the observed

behavior. They are consistent with our estimate of the power recycling factor, however, the

cavity laser power is not simply proportional to the input laser power, but is also affected

by power-dependent thermal gradients inside the interferometer.)

There are several features worth noting in these transfer functions. Firstly, we can now

understand why there is only one peak observed in the optical lever transfer function. This

resonance is associated with a pair of poles s = ±iω−, but the control loops make the

transfer function much more complicated than Eq.(1). The reason why we only have one
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visible resonance is that with high loop gain as in initial LIGO, the pair of zeros s = ±iωz

and the other pair of poles s = ±iω+ asymptotically approach the same value and cancel

each other.

Secondly, the frequency associated with the peak shifts toward lower frequencies as laser

power goes up. This is understood as a radiation pressure effect, since the peak we observed

corresponds to a pair of poles s = ±iω− and ω− decreases as shown in Fig. 3. The frequency

does not go down as rapidly with increasing power as in the naive model, since the control

system enhances the effective restoring force on the ITM.

Thirdly, we can now understand why the phase of the optical lever transfer function at 6.8

W has a 180 degree phase lead. As noted above, under the influence of a strong control loop,

the pair of poles associated with the stable mode cancels the pair of zeros and only the pair

of unstable poles survives. In other words, when the control loop strongly suppresses the

motion of the test masses, the in-loop transfer function oplev(s) looks as if it were a single

mode unstable oscillator. This is clearly observed in both our measurement and the model

as the phase advancement in the plot. This is evidence that instabilities due to radiation

pressure, predicted by Sidles and Sigg, really exist in the interferometer and that the system

successfully operates in the regime where the instability would occur in the absence of control.

Finally, we note that the radiation pressure effect is also observed in the phase of the open

loop transfer function olg(s).

6. Stability

It is very important to know how much more power can be handled with the current control

scheme for the upcoming higher power operation of the LIGO interferometers. In particular,
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an upgrade to initial LIGO (called Enhanced LIGO) is now operational. It will have laser

power roughly three times greater than initial LIGO with the same radius of curvature of

the mirrors and an almost identical control system to that in initial LIGO.

When we discussed the stability of the system without control, a torque T was applied to

the system from ’outside’. However, with the control system in place, T is no longer outside,

but is included within the system. Therefore, in order to judge the stability of the whole

system, we need to consider another torque T ′, which is located truly outside of the whole

system (See Fig.9). We will investigate the response of the system to such an outside torque

H?(s) =
θ2

T ′
. (6)

Fig. 10 shows how the system poles move in the s-plane as a function of the cavity laser

power (We calculate H?(s) using our Simulink model. The complexity of the model means

that an algebraic expression would be difficult to write, and is not likely to be illuminating.).

We immediately notice the difference between Fig. 10 and Fig. 5. The filled circles, which

indicate the systems poles at the full laser power level for initial LIGO, are now all in

the left half plane, as expected. The dynamics of the system are dominated by the set of

poles that will eventually cross into the right half plane (The other sets of poles near the

imaginary axis are all cancelled by zeros.).

According to our model, the system will remain stable until the cavity laser power reaches

roughly eight times higher than that of initial LIGO. This analysis was based on the degrees

of freedom associated with differential motion between the mirrors in the interferometer’s

two arms. The common mode degrees of freedom have lower unity gain frequencies in LIGO.

This means that the full initial LIGO system would probably not remain stable at powers
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as high as are predicted in our analysis. A more complete analysis including the common

mode degrees of freedom will be left for future work.

A new approach to this issue is being tested during the Enhanced LIGO commissioning

process [22]. It uses a control scheme built around the stiff and soft modal basis (illustrated

in Fig. 2). We also note that Advanced LIGO will use arm cavities with negative g-factors,

to reduce its susceptibility to angular instability.

Other workers in the field have also made studies of the radiation-pressure-induced angular

instability in optical cavities. Sakata has demonstrated the effect in a specially-built

apparatus at the National Astronomical Observatory of Japan [23]. Also, an Australian

group observed the ’soft’ mode in an 80 m suspended optical cavity [24].

7. Summary

We observed the effect of radiation pressure on the angular control of the LIGO core optics

at the 4 km interferometer at LIGO Hanford Observatory. This is the first measurement of

this effect performed on a full gravitational wave interferometer. Only one of two angular

modes survives with feedback control since the other mode is suppressed when the control

gain is large enough. A mathematical model was developed to understand the physics. It

indicates that the system will remain stable at substantially higher power levels.
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Fig. 1. Schematic diagram of two mirrors, coupled by radiation pressure caused
by the power of the laser beam P pushing at distances x1 and x2 away from
the center line, when the mirrors are tilted at angles of θ1, θ2 respectively.
I1, I2 are the moments of inertia of the mirrors. R1, R2, L are the radii of
curvature of the two mirrors and the distance between the mirrors. T is an
external torque applied to one of the mirrors to study the system. The sketch
can be viewed as either yaw motion or pitch motion.
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(a) stiff coupled mode

(b) soft coupled mode

Fig. 2. (a) Stiff mode of angular motion in optical resonator. Radiation pressure
works to enhance the mechanical restoring force. (b) Soft mode of angular
motion in optical resonator. Radiation pressure works against the restoring
force from the wire, and if the power exceeds a critical value, then this mode
is unstable.
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Fig. 4. Bode plot of the uncontrolled two-mirror system at various powers. (a)
P = 0, (b) 0 < P < P1, (c) P1 < P < P2, (d) P > P2. Note that the bottom
two plots correspond to the unstable cases where an external servo is necessary
to keep the system stable.
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Fig. 9. Block diagram of our model of an interferometer arm with angular
feedback control. a, b, c, d and B,D,E are the sensing and control matrix,
respectively. Rectangular blocks stand for filter banks. The SUS filters are the
ones related to the suspension system. The factor Kp stands for the optical
parameter 2PL/ [cI(1− g1g2)].
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