LIGO

Estimating the Accidental Coincidence Rates in Searches for Gravitational Waves from Compact Binary Coalescences with LIGO

LIGO Livingston

LIGO The Compact Binary Coalescence Search

Binary Neutron Stars (BNS)
Binary Black Holes (BBH)
Black Hole-Neutron Star Binary (BHNS)

Statistical Significance

LIGO

The statistical significance of the cbc candidates is estimated from time-shifted triggers

Utilizing Time-shifted Triggers

Ex: S4 Binary Neutron

Star search

[Phys. Rev. D 77

(2008) 062002]

Total analyzed time = 576 hrs;

No detection found

Problems with ρ_{eff} ranking:

combined eff snr

Rank by False Alarm Rate (FAR) Cum. hist of num. events vs combined ρ_{eff} H1H2L1 Combine double, triple coincidences 10 Plot IFAR = 1/FAR loudest **triple** coinc. Number of Events 1.0 in triple obs. time Cum. hist of num. events vs combined IFAR for triple obs. time A A A zero-lag background $N^{1/2}$ errors Number of Events 1000 50 We expect a real GW 60 80 90 100110 120 70 combined eff snr to lie at high IFAR Cum. hist of num. events vs combined ρ_{eff} H1L1 100 1000 10 loudest double coinc Number of Events 10 1 in triple obs. time 1 10^{-4} 10-3 10^{-2} 10^{-1} 10° IFAR (yr) 0.1 80 20 40 60 100 120 140 160 180

Solution:

plots from s5 1st yr low mass search [arXiv:0901.0302]

Problems with ρ_{eff} ranking:

Solution:

plots from s5 1st yr low mass search [arXiv:0901.0302]

*S4 Primordial Black Hole Search [Phys. Rev. D 77 (2008) 062002]

Meaningful False Alarm Rates

THANK YOU!