

HAM Suspensions Update

Advanced LIGO Suspensions LIGO-Virgo Meeting March 2009

Derek Bridges representing Advanced LIGO Suspensions team

http://ilog.ligo-wa.caltech.edu:7285/advligo/Suspensions

LIGO-G0900106-v1

Form F0900040-v1

Advanced LIGO SUS Team

- LIGO Caltech: M. Barton, D. Coyne, J. Heefner, A. Heptonstall, K. Mailand, N. Robertson (also at Glasgow), C. Torrie
- LIGO MIT: P. Fritschel, R. Mittleman, B. Shapiro
- LIGO LHO: B. Bland, D. Cook, G. Moreno
- LIGO LLO: D. Bridges, M. Meyer, B. Moore, J. Romie, D. Sellers, G. Traylor
- University of Glasgow: C. Craig, L. Cunningham, A. Cumming, G. Hammond, K. Haughian, J. Hough, R. Jones, R. Kumar, I. Martin, S. Rowan, K. Strain, K. Tokmakov, M. van Veggel, A. Wanner
- Rutherford Appleton Laboratory (RAL): A. Brummitt, J. Greenhalgh, J. O'Dell
- University of Birmingham: S. Aston, R. Cutler, D. Lodhia, A. Vecchio
- University of Strathclyde: N. Lockerbie

LIGO-G0900106-v1

Advanced LIGO

HAM Suspension Overview

- Four types of suspensions sit on HAM optical tables
 - Large Triple suspension (HLTS) 265mm dia. optic
 - Power Recycling Cavity Mirror (PR3)
 - Signal Recycling Cavity Mirror (SR3)
 - Small Triple suspension (HSTS) 150mm dia. optic
 - Input Mode Cleaner (IMC)
 - Power Recycling Cavity Mirrors (PRM, PR2)
 - Signal Recycling Cavity Mirrors (SRM, SR2)
 - Double suspension 450mm × 150mm × 38mm optical bench
 - Output Mode Cleaner (OMC)
 - Single suspension 76mm dia. optic iLIGO Small Optic Suspension (SOS)
 - Input Mode Matching Telescopes
 - Steering Mirrors

BSC2

HAM4

HAM5

HAM6

Stable Recycling Layout

HAM2 Layout

LIGO-G0900106-v1

HAM3 Layout

LIGO-G0900106-v1

HAM Suspensions Status

- Triples
 - Preliminary design review complete
 - Triples electronics
 - Design pursued by SUS-US building on SUS-UK work
 - Production by SUS-UK
 - Large Triples (HLTS)
 - Prototype being fabricated
 - Stainless steel welded structure resonance testing done
 - Minor redesign of some parts underway
 - Small Triples (HSTS)
 - Input Mode Cleaner prototypes fully tested at LASTI
 - Upcoming triple-quad cavity test at LASTI

LIGO-G0900106-v1

HAM Suspensions Status (cont.)

- Doubles (OMC)
 - Output Mode Cleaners installed, being tested and commissioned for Enhanced LIGO at LLO and LHO
 - Final design review ongoing
 - Procurement to start by May 1, 2009
- Singles
 - Baseline reuse iLIGO SOS's (Small Optic Suspension)
 - Wires and clamps to be replaced

Triples PDR

- Preliminary design review for triple suspensions conducted Nov. 2008-Jan. 2009
- Result: Proceed with final design
- Recommendations:
 - Investigate stronger/higher-stress blade springs to increase vertical isolation
 - Consider design with higher stress in wires to lower highest vertical frequency (28 Hz)
 - Collaborate with SEI does modeling indicate coupling (at 28 Hz peak in vertical) between HAM-ISI and suspension?
 - Coordinate with SYS on max. acceptable weight based on layout
 - Separate PDR to be held for electronics

LIGO-G0900106-v1

Advanced LIGO

HLTS (HAM Large Triple SUS)

- Used for large optics in stable recycling cavities
- Prototype being fabricated
 - SSTL welded structure
 - Resonance test results well-correlated with FE analysis (~140 Hz)
 - Electronics test stand ready
 - Some minor redesign of parts to simplify assembly
- Prototype testing at LLO LIGO-G0900106-v1

HSTS (HAM Small Triple SUS)

- Originally designed for Input Mode
 Cleaner
- Now also used for small Recycling Mirrors
- IMC configuration tested at LASTI
- Problem with structural resonant frequencies
 - Measured: First resonance = ~50 Hz
 - Subsequent requirement: First resonance >150 Hz (to avoid affecting HAM-ISI controls)
 - Need to increase frequency while maintaining footprint (crowding in HAM2)

LIGO-G0900106-v1

HSTS (HAM Small Triple SUS)

- Structural redesign (T080318)
 - Thicker base plate (1" \rightarrow ~60 Hz)
 - Addition of crossmembers and gussets (~85 Hz)
 - Switch structure material from AI to SSTL
 - Heavier
 - Easier to weld
 - Reduce mass of nonsuspended items
 - Tablecloth SSTL to Al
 - Current FEA ~105 Hz
 - Increase size of structural members
 - Provision for struts
- Baffle design (with IO) still in progress LIGO-G0900106-v1

Output Mode Cleaner

LLO OMC

LIGO-G0900106-v1

Form F0900040-v1

LLO OMC Damping Tests

- Active Damping: Requirement to damp to $e^{-1} = 36.8\%$ in <10 seconds achieved
- Passive Damping: Measured Q values ~90 (long.), ~70 (vert.)
 - Values lower than modeled; however no requirement has been set
 - Attributed to electronic cabling investigation ongoing

Maraging Steel Blade Springs

- RFQ for more prototype blades
 - Enlarge vendor pool
 - Investigate higher-stress blades
 - Thinner blades → Tighter blade curvature
 - Testing of linear behavior, overload recovery to be done
 - Electroless nickel-plating of blades now included in process specification (E0900023)
 - Prevents corrosion
 - Samples tested under multiple loadings – no flaking, no performance degradation

LIGO-G0900106-v1

Advanced LIGO

Misc. Engineering Improvements

- Many initiatives to streamline engineering work
 - Opto-Mechanical meetings (twice monthly) sharing of data between engineers in SUS, SEI, SYS, AOS
 - Reinstated SUS technical meetings (weekly)
 - New Advanced LIGO drawing templates (M. Meyer, B. Moore)
 - New color coding system for materials (D. Bridges)
 - More training in SolidWorks and PDMWorks Vault (version control for models and drawings), streamlined processes for new DCC
 - New hires for drafting, logistics, clean and bake
- These initiatives support adherence to aggressive schedule

• Final Design Reviews – HSTS (summer), HLTS (autumn) LIGO-G0900106-v1

Conclusions

- SUS teamwork continues
 - Development work through FY 2009 in parallel with project work
 - <u>HSTS/HLTS</u> Design, prototyping, assembly, testing, final design reviews
 - <u>Triple Electronics</u> Finish design, build prototypes, design reviews
 - <u>OMC</u> Final design review actions, start production
 - <u>iLIGO OSEMs</u> Complete value engineering, design review, start production
 - <u>Quad SUS</u> Complete training (incl. electronics), receive production parts, start assembly

LIGO-G0900106-v1

Advanced LIGO