FFT study of Mode matching at LHO and LLO

Hiro Yamamoto / Caltech
-LHO4k ITMX
»4ITM07 (14.24km) vs 4ITM05 (13.58km)
口Effect of thermal deformation
"Thermal model vs simple lens
ulnput beam mode matching with arm
»CR \& SB in COC is insensitive to input beam mode
»Reflected CR is sensitive to input beam mode

Mode matching in LHO4k beam and mirror curvature

Optimum power to correct static curvature errors

	ITM, ROC (km)	Gaussian heat power (mw)		
		Data	FFT	Lens
LHO2k	ITMx 13.23	0		57
	ITMy 13.72	17		110
LHO4k	ITMx 14.24	35	27	52
4ITM07	ITMy 13.60	60	60	82
LHO4k	ITMx 13.58		40	63
4ITM05	ITMy 13.60		60	82
LLO	ITMx 14.76	22	30	53
	ITMy 14.52	39	60	83

FFT optimal : based on upper and lower SB gains and Spob

CR and SB widths at optimal heating

$$
\begin{aligned}
& \text { Power }=P \mathrm{i} \operatorname{Exp}\left(-\frac{2 x^{2}}{w^{2}}\right) \\
& \ln (\text { Power })=\ln (P)-\frac{2 x^{2}}{w^{2}}
\end{aligned}
$$

Power in Symmetric port

Thermal lensing and $\mathrm{n}_{\text {effective }}$

- P. Willems calculated based on MIT model -

Gaussian and Annular no annular heating, smoother deformation

modes in the dark port
 - back on the envelope -

Mode matching of input beam to COC

Beam matching with HOT arm

- Dependence on
" input beam mode
" ITM heating
- Cold beam can never fully mode match with arm

Beam matching with COLD arm

Commissioning mig, April 17, zUU

Input beam mode matching LLO : cold and hot

