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Purpose The goal of the calculation in this report is (i) to see if there is a difference between
the results of the square-sum method with a monolithic coating and that with the actual multi-
layer coatings, and (ii) to see if we can obtain the effective losses in the perpendicular and
parallel directions (φ‖ and φ⊥) without approximating the Poisson ratio to be zero. We will
derive the strain tensor and stress tensor elements Ek

xx, Ek
zz, T k

xx, and T k
zz of each layer, calculate

the product
∑

k(T
k
xxEk

xx + T k
zzE

k
zz)φk, and try to rewrite it by

∑
k T k

xxEk
xxφ‖ +

∑
k T k

zzE
k
zzφ⊥.

Multi-layer analysis Defining A = λ + 2µ and B = λ with Lamme coefficients1 λ and µ,
we can write down the relation of the stress and strain tensor elements of k-th layer as2(

T k
xx

T k
zz

)
=

(
Ak Bk

Bk Ak

)(
Ek

xx

Ek
zz

)
, (1)

the inverse of which is (
Ek

xx

Ek
zz

)
= Γk

(
Ak −Bk

−Bk Ak

)(
T k

xx

T k
zz

)
, (2)

where Γk = 1/(A2
k − B2

k). The boundary condition of the k-th and (k + 1)-th layers includes

Ek
xx = Ek+1

xx , (3)
T k

zz = T k+1
zz . (4)

Using these and Eqs. (1)(2), we get
(

Ek
xx

Ek
zz

)
=

(
Ek+1

xx

−BkΓk(AkE
k
xx + BkE

k
zz) + AkΓkT

k+1
zz

)

=

(
Ek+1

xx

−BkΓk(AkE
k
xx + BkE

k
zz) + AkΓk(Bk+1E

k+1
xx + Ak+1E

k+1
zz )

)
, (5)

1Lamme coefficients can be written with Young’s modulus Y and the Poisson ratio σ as

. λ =
Y σ

(1 + σ)(1 − 2σ)
, µ =

Y

2(1 + σ)
.

2There is no special meaning of having k on top or bottom.
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then (
Ek

xx

Ek
zz

)
=

(
1 0

AkBkΓk 1 + B2
kΓk

)−1(
1 0

AkBk+1Γk AkA
k+1Γk

)(
Ek+1

xx

Ek+1
zz

)

=
1

Ak

(
Ak 0

Bk+1 − Bk Ak+1

)(
Ek+1

xx

Ek+1
zz

)
. (6)

This relation of the neighboring layers yields the strain tensor elements of the k-th layer as a
function of the strain tensor elements of the 2N -th layer:

(
Ek

xx

Ek
zz

)
=

⎡
⎣2N−1∏

j=k

1
Aj

(
Aj 0

Bj+1 − Bj Aj+1

)⎤⎦(E2N
xx

E2N
zz

)

=
1

Ak

(
Ak 0

B2N − Bk A2N

)(
E2N

xx

E2N
zz

)
. (7)

Let us define that the first layer (k = 1) is the first tantala coating probed by the beam and
there are N − 1 of silica-tantala doublets after that till the silica substrate, the surface of
which is regarded as the 2N -th layer. Since Ak and Bk just depend on whether k is even
(silica) or odd (tantala); Ak → A (k : even), Ak → A′ (k : odd), Bk → B (k : even), and
Bk → B′ (k : odd), the strain tensor elements can be simply described as

[silica] :

(
Es

xx

Es
zz

)
=

(
Esub

xx

Esub
zz

)
, (8)

[tantala] :

(
Et

xx

Et
zz

)
=

1
A′

(
A′ 0

B − B′ A

)(
Esub

xx

Esub
zz

)
, (9)

Since each silica layer or tantala layer has the same strain tensor elements, thus the same stress
tensor elements, adding up the product of the tensor elements (namely the elastic energy) of
each layer is just same as calculating the product of a monolithic, thick silica (or tantala) layer
as we usually do.

Losses in the perpendicular and parallel directions Let us first focus on the elastic
energy in the parallel direction. Adding up the product of strain and stress tensor elements,
we get (here, we omit to write ”sub” on the shoulder of the tensor elements)

2N−1∑
j=1

T j
xxE

j
xxdjφj =

∑
j=odd

(
A′E2

xx + B′ExxEj
zz

)
djφt +

∑
j=even

(
AE2

xx + BExxE
j
zz

)
djφs

=
(

A′E2
xx + B′B − B′

A′ E2
xx + B′ A

A′ExxEzz

)
dtφt +

(
AE2

xx + BExxEzz

)
dsφs .

(10)

If we want to rewrite this with the effective x-direction loss φ‖ as

2N−1∑
j=1

T j
xxE

j
xxdjφj →

2N−1∑
j=1

T j
xxE

j
xxdj × φ‖ , (11)
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then the loss would be given as

φ‖ =
A(A′2 − B′2 − ηB′)dtφt + A′(A2 − B2 − ηB)dsφs

A(A′2 − B′2 − ηB′)dt + A′(A2 − B2 − ηB)ds
(12)

with η ≡ −Tzz/Exx, which cannot be obtained without solving the whole elastic equations
including the substrate, unless we assume the Poisson ratios be zero (⇒ B = B′ = 0). With
this assumption, the loss is written without η as

φapp
‖ =

A′dtφt + Adsφs

A′dt + Ads
, (13)

or, with the Young’s moduli,

φapp
‖ =

Y ′dtφt + Y dsφs

Y ′dt + Y ds
, (14)

which is what has been used to calculate AdLIGO’s coating thermal noise. The same thing
can be done for the perpendicular direction. The product of strain and stress tensor elements
is

2N−1∑
j=1

T j
zzE

j
zzdjφj =

∑
j=odd

(
A′Ej

zz
2 + B′ExxEj

zz

)
djφt +

∑
j=even

(
AEj

zz
2 + BExxE

j
zz

)
djφs

= A′
(

B − B′

A′ Exx +
A

A′Ezz

)2

dtφt + B′
(

B − B′

A′ Exx +
A

A′Ezz

)
Exxdtφt

+
(
AE2

zz + BExxEzz

)
dsφs ,

(15)

and the perpendicular loss is

φ⊥ =
A(B′ + η)dtφt + A′(B + η)dsφs

A(B′ + η)dt + A′(B + η)ds
. (16)

If the Poisson ratios are zero, the loss becomes

φapp
⊥ =

Adtφt + A′dsφs

Adt + A′ds
, (17)

or

φapp
⊥ =

Y dtφt + Y ′dsφs

Y dt + Y ′ds
, (18)

which agrees to what has been used for AdLIGO.

Conclusion This report showed two facts on the calculation of coating thermal noise: (i)
the square-sum method of monolithic coatings gives the same result as is obtained by square-
summing each layer’s Brownian motion in the multi-layer coatings, and (ii) the estimation of
mechanical losses in the perpendicular and parallel directions cannot be done without the full
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calculation of substrate thermal noise unless the Poisson ratios can be approximated to be
zero. Regarding these, as a conclusion, the calculation with the square-sum method would be
the one to be used.

Let us put a couple of remarks here. First, the parallel-perpendicular method would be
useful if we have a measurement result of the loss angles in the two directions instead of the
loss angle of each material. Besides, it is certainly possible to calculate the noise level even
more accurately with the square-sum method if we have the loss angles of the two directions
for each material. Second remark is that the multi-layer analysis shown in this report does
not include the fact that some unignorable fraction of the beam transmits the first few coating
layers. A more accurate estimation would be obtained with this effect taken into account, and
the analysis should be done in the near future.
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