Design Specifications for the OMC Suspension D Coyne, P Fritschel, J Romie, N A Robertson Updated 13 Aug 2007 Further updated with comments for review 31 Aug 2007 DCC#: T070189-01-R Further updated for FDR Feb 2009 by NAR (updates in italics) T070189-v1 Further updated by NAR Feb 7th 2014, updates in red. T070189-v3 Note I am calling this v3 as there is confusion in numbering on the DCC between v1 and v2. | Property | Value or
Description | Comment | Comments added for 2 nd prototype readiness review Aug/ Sept 2007 Further comments Feb 2009 | |--------------------------|---|---|--| | Baseplate
Dimensions | 450 mm x 150
mm x 40 mm | Baseplate only | Actual silica bench (aka baseplate) 450 mm x 150 mm x 39 mm aLIGO size 450mm x 150mm x 41.275 mm (D1200105) | | Payload Mass | 6.0 kg Current design has mass ~ 6.9 kg ALIGO Target 7.0 kg (ref L0900064, pg 3 | Baseplate plus components | Design allows for +/-10% (i.e. maximum of 6.6 kg) Blades redesigned for higher mass Actual ~ 7.2 kg (in ICS entries) | | Baseplate
Material | Light-weighted aluminum, or fused silica | Baseplate provided by ISC | Al bench suspended and tested, silica bench still to be suspended Silica benches now suspended | | Baseplate internal modes | First mode > 1000 Hz | Get it above IFO
noise minimum and
violin mode
fundamental | FEA shows ~ 1100 Hz (see supporting documentation) | | Isolation | Double
pendulum, with
two stages of
blades for
vertical isolation | analysis of baseplate | Isolation at 10 Hz Long: ~ 5 x 10^-4 Vert: ~ 4 x 10^-3 (exact values depend on level of damping and details of bench design) | | |--|---|--|--|--| | Solid-body
mode
eigenfrequencie | 0.8-2 Hz
es | This is a guideline only. Modes involving stretching of the bottom stage wires will of course be higher. | Actual frequencies are in range 0.5 Hz (lower yaw mode) to ~ 7 Hz (higher roll mode). Details on OMC Suspension wiki site under "Testing" link Final values in SUS Ops manual under OMCS https://awiki.ligo-wa.caltech.edu/aLIGO/Suspensions/OpsManual | | | Suspension fiber Steel - music type wire | | | | | | Beam height | 101.6 mm +/- 2
mm[4.0 inches]
above HAM
optics table;
25.4 mm +/- 2
mm [1.0 inch]
above baseplate
Current design | same as iLIGO ISC | Beam is now below bench, not above | | | | has beam 20
mm below the
baseplate | | | | | Suspension
structure
footprint | TBD | Keep as small as
practical, to leave as
much room as
possible on HAM
table for other
components | | | | Structure resonances | First mode > 150 Hz | | Lowest freq. is ~ 140 Hz (see supporting documentation) | | | Suspension structure height | 725 mm ? | This is not really a spec that needs to defined here | Structure height has been looked at in HAM 6 layout to check it doesn't hit ceiling. (see supporting documentation) | | | Suspension point locations | 4 points | Along (150mm) width, as close to | Susp. points moved in from edge in width direction to reduce higher pitch mode from 9 | | on baseplate edges as possible; Hz to ~ 4 Hz. Susp points are at 20% of length along length, position from ends in the long axis direction. points to reduce plate Updated – see FDD T0900060-v2 or above motion (e.g., 22% of length from ends minimizes static deflection) Slots in plate, or pegs Countersunk through holes chosen for ease of Suspension manufacture of silica bench inserted in side of **TBD** point design plate Updated – see FDD T0900060-v2 or above Local damping Active, 6 DOF Same as IMC B'ham OSEMS used **Probably** OSEM type **TBD** 'Birmingham OSEMs' Pointing range using B'ham OSEMs of order 2 Few hundred Baseplate Guesstimate -- what's milliradians in roll, pitch and yaw positioning & microns, few the IMC control pointing range hundred microrange? (DC) rads Not expected to be Actuator force TBD spectrum critical Actuator noise Not expected to be **TBD** limits difficult Optical line of sight/clearance regs Electrical wiring TBD No., gauge, type, to baseplate connector type Accuracy of mechanical pitch and yaw positioning Accuracy of provide Still to be specified Beam dumps on mounting holes SUS hardware on uprights, at beam height mechanical vertical positioning Mechanical stops for baseplate In place – see detailed mechanical drawings