

Across the Gravitational Wave Spectrum

Stan Whitcomb LIGO/Caltech "Colliding Black Holes" Credit: Werner Benger

Workshop: GW Detection with Atom Interferometry 23 February 2009

LIGO-G0900081-v1

Outline of Talk

- Quick Review of GW Physics
- The GW Spectrum:
 - » Sources in different bands
- Detection techniques in different bands
- Some personal thoughts
 - » A new technology displacing an older one

LIGO

Physics of Gravitational Wave Detection

- In the Minkowski metric, space-time curvature is contained in the metric as an added term, $h_{\mu\nu}$
- Strain $h_{\mu\nu}$ takes the form of a transverse plane wave propagating with the speed of light (like EM)
- Strain $h = \Delta L/2L$ which is the measured property in all active GW detection efforts

$$(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2})h_{\mu\nu} = 0$$

•Since gravity is described by a tensor field (EM is a vector field),

- » gravitons have spin 2 (cf. spin 1 for photons)
- » the waves have two polarization components, but rotated by 45^o instead of 90^o from each other (as in EM)

Evidence for Gravitational Waves

Neutron Binary System PSR 1913 + 16

• Discovered by Hulse and Taylor in 1975

• Unprecedented laboratory for studying gravity » Extremely stable spin rate

• Possible to repeat classical tests of relativity (bending of "starlight", advance of "perihelion", etc.

Binary Pulsar Timing Results

- After correcting for all known relativistic effects, observe loss of orbital energy
- Advance of periastron by an extra 25 sec from 1975-98
- Measured to ~50 msec accuracy
- Deviation grows quadratically with time

Emission of gravitational waves consistent with GR

How Big is h?

• Source energetics : Energy flux in wave is

$$E_{GW} \sim \left(\frac{c^3 D_L^2}{4G}\right) \int_{-\infty}^{\infty} \left|\frac{dh}{dt}\right|^2 dt$$

- Available energy to be radiated in GWs is a fraction of the rest mass of the system $E_{GW} \leq \mathcal{E}M_{Tot}c^2$
- Maximum frequency $f_{\rm max} \leq c \, / \, M_{\it source}$
- Duration typically increases $\sim f^{-1}$
- Distance to source increases as mass decreases
 - "Interesting" $h_{interesting} \sim f^{-\alpha}, \ \alpha < 1$

LIGO-G0900081-v1

The Gravitational Wave Spectrum

CMB Polarization

Polarization via Thompson scattering just before recombination

CMB Polarization Fields

E mode (simulation!)

B mode (simulation!)

Seljak and Zaldarriaga, astro-ph/980501

B modes are evidence for primordial gravitational waves

LIGO-G0900081-v1

Prospects for GW Observations

10

Timing residuals from PSR B1855+09

LIGO-G0900081-v1

Stochastic Background Signature

Pulse arrival time fluctuations from different pulsars will be correlated: $C(\theta_{ij}) = \langle R_I R_j \rangle$

Will need ~ 20 pulsars at 100ns to do this In 5-10 years time.

LIGO Distribution of Millisecond Pulsars

P < 20 ms and not in globular clusters

LIGO-G0900081-v1

Sensitivity of pulsar timing to GWs

Gravitational Wave Detection in Space

The Laser Interferometer Space Antenna LISA

- Center of the triangle formation is in the ecliptic plane
- 1 AU from the Sun and 20 degrees behind the Earth.

LIGO-G0900081-v1

LISA Layout

- Laser transponder with 6 links, all transmitted to ground
- Diffraction widens the laser beams to many kilometers
 - » 1 W sent, 100 pW received by 40 cm telescope
- Use time-delay interferometry to cancel laser frequency noise
- Can distinguish both polarizations of a GW

LISA Sensitivity

Workshop: GW Detection with Atom Interferometry

Terrestrial GW Detectors

Detecting GWs with Interferometry

Initial LIGO Sensitivity Goal

- Strain sensitivity <3x10⁻²³ 1/Hz^{1/2} at 200 Hz
- Sensing Noise
 - » Photon Shot Noise
 - » Residual Gas
- Displacement Noise
 - » Seismic motion
 - » Thermal Noise
 - » Radiation Pressure

Anatomy of a Noise Curve

LIGO-G0900081-v1

Bridging Between LISA and Ground-based Interferometers

What is DECIGO?

DECIGO: the planned Japanese space GW antenna would bridge the LISA and Advanced LIGO bands, reaching down to measure the stochastic background from inflation

DECIGO Pre-conceptual design

Big Bang Observer (BBO)

Mission to measure stochastic GWs from inflation, in the 0.1-1 Hz band, down to $\Omega_{gw}(f) \ge 10^{-17}$

Laser power = $300 \times LISA$, mirror D = $12 \times LISA$, arm length = $0.01 \times LISA$,

accel. noise = 0.01 x LISA

BBO Noise Curve

Einstein Telescope: Baseline Concept

Underground location

Reduce seismic noise Reduce gravity gradient noise Low frequency suspensions

Cryogenic

Overall beam tube length ~ 30km Possibly different geometry

Einstein Telescope: Sensitivity

Some Personal Thoughts and Experiences:

How can a New Technology Displace the Old?

Let's Go Back 30 Years: Bar Detectors

- First ground-based detectors the beginning of GW detection
 - » Joseph Weber 1960's
- Triggered a major new thrust in physics
 - » Studies of astrophysical sources
 - » Significant improvements in sensitivity
- Over the next 3 decades, at least 19 different bar detectors (8 countries) were built and used in searches
 - » Several hundred scientists, students, engineers, and technicians involved in the effort

Technology of Resonant Bars Matures

- Clear path to future
- Recognition of important noise sources
 - » Thermal noise
 - » Back action/Quantum noise
 - » Seismic/acoustic noise
- Large cryogenic systems
- Recognized the need for multiple detectors
- Community had plans for the future

Then Along Came Interferometers

- New technology pushed by a community outside the mainstream bar community
- Promises of increased sensitivity, wider bandwidth
- Naïve estimates of what would be involved
- Demonstrated performance far from that needed
- Unfamiliar language inhibited communication
- Significant tensions

Confrontation and Resolution

- Trust between the two communities grew, gradually
 - » Skepticism in bar community about claims of interferometry
 - » Some level of distrust in interferometer community because of unverified claims of detection
- Key elements in developing cooperation
 - » Appreciation of common problems
 - » Development of common language (noise spectral densities)
 - » Recognition of common problems (thermal noise, quantum noise)
- Recognition that funding decisions were largely independent
 - » Emphasis on different activities
 - Bars on observation
 - Interferometers on development and facility engineering

In the End: for the Interferometers

- Against many people's expectations, interferometers were able to deliver the promised sensitivity and more
 - » Fundamental limits are fundamental—everything else can be overcome
- The time to achieve the promise was an order of magnitude longer than estimated
 - » Experimenters really are naive when it comes to the real world
- The real challenges were unforeseen
 - » Optical scattering, servo bandwith and noise, alignment, oscillator phase noise, economical vacuum constructon...
 - » "But there are also unknown unknowns, the ones we don't know we don't know." --D. Rumsfeld (Feb. 12, 2002)

In the End: for the Bars

- The challenges of improving a mature technology would prove more difficult that expected
 - » Experimenters really are naive when it comes to the real world
- Pressure from the interferometer community would help motivate the bar groups observe
 - » Extended data-taking runs set the standard for later interferometer runs
- New ideas for bar detectors were explored
 - » Spheres, DUAL
 - » May still be used someday
- Much of the bar community eventually moved into the interferometer world

Final Thoughts

- This workshop brings together two communities
- We have much to learn from each other
 - Rai Weiss's fortune cookie:
 "The wise man will learn more from the fool than the fool will learn from the wise man"
- We will leave with disagreements and questions
 - » Two days will not be enough to resolve the concerns and uncertainties
- Our success in this workshop will depend on the lines of communication that we keep open after we leave