Absolute Length Measurement of the Caltech 40 Meter Interferometer's Optical Cavities

Alberto Stochino, Koji Arai, Yoichi Aso, Rana Adhikari

Motivations

Why Size Does Matter

Cavity Characterization

- Optics metrology
- Thermal Lensing Effects

Cavity and IFO More Accurate Modeling

- Cavity response to sidebands
- Higher Order Mode Resonances Localization
- Support to Lock Acquisition

• Finer IFO Tuning

- Suspension Positioning
- Sideband Frequencies
- Demodulation Phases

• Possible Effect of Length Detuning on DARM Noise

- Sideband Imbalance Induced by the Recycling Cavities
- Sideband Intensity noise
- Frequency noise

Interferometric Length Measurement

From the phase difference Φ between the incident and the returned light at distance L:

$$L = \frac{c}{2\nu} \left(\frac{\phi}{2\pi} + N \right)$$

N = # wavelengths in the round-trip optical path

An RF Modulated Field Makes easier to measure Φ and N for macroscopic distances L

Resolution

$$\delta L = \frac{c}{2v_m} \frac{\delta \phi}{2\pi} = \frac{\lambda_m}{2} \alpha$$

For higher accuracy Fabry-Perot Cavity

Fabry-Perot Cavity

FP Cavity Accuracy Enhancement

For v_m near a cavity resonance:

$$\delta\phi = \Im[r_{FP}(v_m)] \approx \frac{r_2(1-r_1^2)}{(1-r_1r_2)^2} \left(\frac{2L}{c}\right) 2\pi\delta v_m$$

Since around the resonance

 $\delta v_m / v_m = \delta L / L$

$$\delta L = \frac{(1 - r_1 r_2)^2}{r_2 (1 - r_1^2)} \left(\frac{c}{2v_m}\right) \frac{\delta \phi}{2\pi}$$

Cavity Finesse

$$\mathscr{F} = \frac{\pi \sqrt{r_1 r_2}}{1 - r_1 r_2}$$

Transverse Mode Spacing

Beams: Hermite-gaussian representation

Phase Longitudinal Evolution

 $\Phi_{nm}(z) = kz + \phi_{nm}(z)$

Guoy Phase

$$\phi_{nm}(z) = -i(n+m)[\psi(z) - \psi_0]$$

$$\psi(z) = \tan^{-1}(\frac{z}{z_R})$$

Resonant Condition in a Fabry-Perot Cavity

 $E(x, y, z) = \sum_{n,m}^{\infty} E_{nm} u_n(x, z) \times u_m(y, z) e^{ikz}$

 $\Phi_{nm}(L) = \ell \pi$

$$v_{\ell nm} = \frac{c}{2L} \left[\ell + (n+m+1)\frac{1}{\pi}\cos^{-1}\sqrt{\left(1-\frac{L}{R_1}\right)\left(1-\frac{L}{R_2}\right)} \right]$$

Transverse Mode Spacing $v_{TMS} = v_{\ell,n,m} - v_{\ell,n,m-1} = \frac{1}{\pi}\cos^{-1}\sqrt{\left(1-\frac{L}{R_1}\right)\left(1-\frac{L}{R_2}\right)}$
g-factor $g_i = \left(1-\frac{L}{R_i}\right)$

Absolute Length Measurements in GWID (1)

TAMA, JAPAN

A. Araya et al, Applied Optics 38 (1999) 2848-2856, "Absolute-Length Determination of a Long-Baseline Fabry-Perot Cavity by Means of Resonating Modulation Sidebands"

RF Phase Modulated field

$$E_{in} = E_0 e^{\gamma \cos(\omega_m t)} e^{i\omega t} \approx E_0 \left[J_0 e^{i\omega t} + i J_1 e^{i(\omega - \omega_m)t} + i J_1 e^{i(\omega + \omega_m)t} \right]$$

- 1. Cavity locked to both carrier and sidebands:
 - to the carrier with an auxiliary RF modulation frequency
 - to the sidebands by acoustic modulation of the sidebands and double demodulation PDH extraction
- 2. The PDH signal provides a way to measure the phase lag that one sideband accumulates inside of the cavity v_m

 $\implies \delta L / L = 3 \times 10^{-9}$

Very accurate, but complex and not possible "online"

Absolute Length Measurements in GWID (2)

LHO 2k, 2000

FSR measured by tuning the sidebands frequency to complete anti-resonance when the carrier is locked.

(The anti-resonance is detected when a dip appears in the power spectrum at the AS port 's PD. A confirm comes from swinging one of the cavity mirror; the two sidebands' doublet fringes fade into only one). Accuracy 10⁻⁹

- (B. Kells, elog 12/7/00; LIGO doc G010255-00)

LHO 4k

Measurements of transfer functions by sweeping the sideband modulation frequency before the Mode Cleaner. Accuracy:

longitudinal mode spacing 2x10⁻⁸, transverse mode spacing 2x10⁻⁸

- M. Rakhmanov et al, Class. Quantum Grav. 21 (2004) S487-S492, "Characterization of the LIGO 4 km Fabry.Perot cavities via their highfrequency dynamic responses length and laser frequency variations"
- R. Savage et al, LSC Meeting on March 2005, LIGO document G050111-00, "Summary of recent measurements of g factor changes induced by thermal loading in theH1 interferometer"
- R. Savage et al, Poster in 6th Edoardo Amaldi Conference (2006), LIGO document G050362-00, "Measurement of thermally induced test mass surface curvature changes in a LIGO 4-km interferometer"

The Vernier Technique (3)

The cavity length is swept by exciting one mirror.

 ΔL = distance between carrier and one sideband relative to the same longitudinal mode n

 ΔL_{fsr} = distance between two adjacent longitudinal modes of the carrier

$$\frac{\Delta L}{\Delta L_{fsr}} \approx \frac{V_m}{V_{fsr}}$$

The cavity length is changing! Not very accurate: $\sim 10^{-3}$.

"If I used my finger to measure the length, that would be as much accurate!"

Rana Adhikari, Caltech, circa August 2008

M Rakhmanov, M Evans and H Yamamoto, Meas. Sci. Technol. 10 (1999) 190–194. "An optical Vernier technique for in situ measurement of the length of long Fabry–Perot cavities"

A New Technique

A RF modulation is produced by the beating of the main beam with that of an auxiliary laser at a slightly different frequency.

Interference Field

 $E(x,t) = E\left[e^{i(\omega_1 t + k_1 x)} + e^{i(\omega_2 t + k_2 x)}\right] \qquad \qquad \left[E_1 = E_2 = E \text{ for simplicity}\right]$

Power Detection Measurement

 $\omega_{1} \operatorname{resonant} \\ \Delta \omega = \omega_{2} - \omega_{1} = n \omega_{FSR}$ $E_{t} = EE^{*} = 2TE^{2} [1 + \cos(\Delta \omega t)]$

Conditions for the measurement:

- Cavity locked to main laser (ω_1)
- Auxiliary laser's frequency ω_2 locked to ω_1 by a tunable offset $\Delta \omega$

Locking the auxiliary laser to the PSL

11

Arm Measurement Scheme

Strategy

- Auxiliary beam injected from the dark port
- Cavity locked to the main beam
- Frequency difference of the two lasers stabilized by the PLL servo
- Beating appears at the transmission only when aux. beam is resonant
- Mode spacing read from the LO freq of the PLL at max of transmission

Optics Setup

AS Table

Injection Optics – AP Table Detail

Detection Setup

X Arm FSR Series

Fit

FSR Fit

Y-Arm

Mode Coupling

Mode Overlapping Ratio

 $E_1 E_1^* = P_1$ $E_1 = \sqrt{P_1} e^{i\omega_1 t} | TEM_{00} \rangle$ $E_{2}E_{2}^{*}=P_{2}$ $E_2 = \sqrt{\alpha P_2 e^{i\omega_2 t} | TEM_{00} \rangle} + \sqrt{(\alpha - 1) P_2 e^{i\omega_2 t} | TEM_{xx} \rangle}$ If $V_2 = V_1 + nV_{FSR}$ at the transmission: $E_2 = \sqrt{\alpha P_2} e^{i\omega_2 t} |TEM_{00}\rangle$ $P_{heat \ 00} = (E_1 + E_2)(E_1 + E_2)^* = P_1 + P_2 + 2\sqrt{\alpha P_1 P_2} \cos(\Delta \omega t)$ **TEM**₀₁ / **TEM**₁₀ If $v_2 = v_1 + \frac{1}{\pi} \cos^{-1} \sqrt{\left(1 - \frac{L}{R_1}\right) \left(1 - \frac{L}{R_2}\right) \frac{c}{2L}}$ at the transmission: $E_2 = \sqrt{(\alpha - 1)P_2} e^{i\omega_2 t} |TEM_{10}\rangle$ $P_{beat 10} = (E_1 + E_2)(E_1 + E_2)^* = P_1 + (\alpha - 1)P_2 + 2\sqrt{\alpha(\alpha - 1)P_1P_2} \cos(\Delta\omega t)$

Transverse Beating Pattern

Transverse Beat

- The arm cavity is locked to the TEM₀₁/TEM₁₀ of the main beam by tilting the End Mirror
- The beating with the TEM₀₀ of the aux beam is visible in transmission

The lobes have opposite phase and the power hitting a photodiode is constant. The beat does is not detected by a photodiode.

Shaving the Beam

Optics Setup on the End Table

Knife edge place right in front of the PD to avoid diffraction

Astigmatic Mirrors

Y Arm Transverse Mode Spacing

The End Mirror's Astigmatism brakes the degeneracy of the 10 and 01 modes

$$R_{1} = \infty \qquad v_{10} - v_{01} = \frac{1}{\pi} \left[\cos^{-1} \sqrt{1 - \frac{L}{R_{2x}}} - \cos^{-1} \sqrt{1 - \frac{L}{R_{2y}}} \right]$$

Summary of Measurements on the Arm Cavities

X Arm

FSR =	(3897627 +/- 5) Hz
L =	(38.45833 +/- 0.00005) m
g _{2x} =	0.31197 +/- 0.00004
$g_{2y} =$	0.32283 +/- 0.00004
$R_{ETM,x} =$	(55.8957 +/- 0.0045) m
R _{ETM,y} =	(56.7937 +/- 0.0038) m

Y Arm

FSR =	(3879252 +/- 30) Hz
L =	(38.6462 +/- 0.0003) m
g _{2x} =	0.31188 +/- 0.00004
g _{2v} =	0.32601 +/- 0.00004
$R_{ETM,x} =$	(56.1620 +/- 0.0013) m
R _{ETM,y} =	(57.3395 +/- 0.0011) m

LIGO's Metrology

(57.37 +/- 0.6) m

Mode Resonances at the 40m

(Matlab code by J. Miller)

Recycling Cavities

- The finesse is lower (<80) and frequency dependent
 - Cavity modeling necessary
 - But it is easier to make the aux beam go through
- Where to inject the aux beam? The Schnupp Asymmetry makes things harder
 - Maybe not to much since it is frequency dependent
 - Doable for the PRC with current 40m configuration
 - SRC?

PRC Model

Short cavity length measurement A) for the PSL beam ($\beta_0=\pi$, Carrier Anti-resonant Case)

B) for the auxiliary beam

Paux / PPSL = 0.0034

Expected Max Contrast: $1-P_{min}/P_{max}$ = 4 (Paux PPSL)^{1/2}/(Paux^{1/2}+PPSL^{1/2})² = 0.21 **Intracavity Power**

$$P_{PRC}(\Omega) = \left|G_{PRC}(\Omega)\right|^2 \left|E_{in}\right|^2$$

$$G_{PRC} = \frac{r_{ITM} \sin(\alpha) e^{-i\delta\beta} e^{il_{RM}\Omega/c}}{1 - r_{RM} r_{ITM} \cos(\alpha) e^{-i\delta\beta}}$$

$$\Omega = \Omega_0 + \omega$$

$$\alpha = \frac{\Delta l \Omega}{c}$$

$$\beta = \frac{(l_1 + l_2 + 2l_{RM})\Omega}{c} = \frac{2l_{PRC\Omega}}{c}$$

PRC Expected Intra-cavity Power

Carrier Anti-resonant, nominal Schnupp Asymmetry

PRC Preliminary Results

PRM Reflection PD

Adjustment of the model parameters necessary to extract the length from the measurement

Future Work

• Continue the measurements on PRC

- Get a new faster PD (no filter, larger bandwidth)
- Turn off f2
- Fit data with model
- Measure SRC
 - how to go through MC?

• Phase detection instead of power detection?

- The aux beam is not stable enough because the low gain/bandwidth of the PLL servo
- The phase of the NPRO is locked, but not its frequency. The beam has arbitrary phase
- Study effect on Advanced LIGO Sensitivity
 - Modeling Frequency and Amplitude noise on DARM