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Preparations for Gravitational Wave Searches 
with the Enhanced LIGO Detectors
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Today’s Talk

• General relativity framework
• Some potential gravitational wave sources
• Overview of interferometer operations
• Enhanced LIGO improvements

With thanks to 
Michael Landry, 
Fred Raab, 
Vern Sandberg, 
Kate Dooley

Dale Ingram
LIGO Hanford Observatory
ingram_d@ligo-wa.caltech.edu
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Geometry lies at the heart of general 
relativity
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General relativity tells us that spacetime 
has measurable properties such as 

curvature and stiffness

John Wheeler’s 
view of Einstein’s
description of 
space, time 
and gravity
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Curvature is real!

Not only the path of matter, but 
even the path of light is 
affected by gravity from 

massive objects

Einstein Cross
Photo credit: NASA and ESA

A massive object shifts apparent 
position of a star
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Gravitational waves -- ripples in the 
curvature of spacetime

Fluctuations in the 
quadrupole moment of 
a system of masses will 

produce ‘kinks’ in the 
spacetime fabric.  The 
kinks will propogate as 

transverse waves.

Rendering of space stirred by 
two orbiting black holes:
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Sources: Bursts such as supernovae 
could yield GW signals depending on 

the asymmetry of the explosion
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Pulsars require an asymmetric mass 
distribution (bumps)
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Inspirals are expected to be the 
loudest sources




1/22/2009 LIGO-G0900051 10

Why use interferometers as 
gravitational wave detectors?

Gravitational waves 
shrink space along 
one axis as they 
stretch space along 
a perpendicular  
axis.  Both axes are 
perpendicular to the 
direction of 
propagation.  

Mark the space at (x) and (y); look for the lengths of the 
ellipse axes to fluctuate
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The basic Michelson design provides 
the ability to monitor a circle of space

Laser

Beam 
Splitter

End Mirror End Mirror

Screen
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Fabry Perot cavities and power 
recycling provide additional sensitivity

Laser

signal
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“Sensitivity” means displacement sensitivity – 
the ability of the detector to sense differential 

motions of the mirrors  

How sensitive?

0.000000000000000001 m
a meter

a centimetera millimetera human hair
one wavelength

of light diameter of
an atom

LIGO
displacement

sensitivity
diameter of
a nucleus
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Laser and
Vacuum Equipment 
Area (LVEA)

Pre-stabilized laser 
enclosure (PSL)

PSL

2.5 mile-long 
arm

2.5 mile-long 
arm

2.5 mile-long 
arm

2.5 mile-long 
arm

Suspended
mode cleaner 
and mode-matching
telescopes

Recycling 
mirror

Beam
Splitter

Inner Fabry 
Perot Mirror

Signal Sensing

2-km detector 
chambers and 
beam line
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Vacuum chambers provide quiet 
homes for the mirrors

View inside Corner 
Station Standing at 

vertex beam 
splitter 
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Evacuated Beam Tubes Provide Clear 
Path for Light
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Initial LIGO PSL Components: All-Solid-State 
Nd:YAG Laser, Pre-mode Cleaner, Reference 

Cavity 
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Beam path from PSL through HAM1 and 
HAM2

The Input Optics include all the elements from the 
EOM to the Mode-Matching Telescope.

18

Laser

Reference 
cavity

Pre-Mode 
Cleaner

EOM

Mode 
Cleaner

Faraday 
isolator

Recycling mirror

Mode matching
telescope

air vacuum
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Initial LIGO HAM 1
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Local sensors/actuators provide 
damping and control forces

Mirror is balanced on 1/100th inch
diameter wire to 1/100th degree of arc

Optics 
suspended 
as simple 
pendulums

Pendulum suspensions give mirrors freedom 
of movement in the LIGO frequency band
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Core Optics

• Substrates: SiO2
» 25 cm Diameter, 10 cm thick
» Homogeneity < 5 x 10-7
» Internal mode Q’s > 2 x 106

• Polishing
» Surface uniformity < 1 nm rms
» Radii of curvature matched < 3%

• Coating
» Scatter < 50 ppm
» Absorption <  2 ppm
» Uniformity <10-3

• Production involved 6 companies, NIST, and LIGO 
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Suspended Core Optic
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BSC Passive Vibration Isolation
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AS port signal sensing: Low noise configuration 
splits the light onto an array of photodiodes 

(looking down)
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Enhanced LIGO – transition from 10W 
to 35W of laser power

• Prepared by 
AEI/LZH 
(Germany)

• World-leading 
performance in 
frequency and 
amplitude stability

• Base unit for 
Advanced LIGO
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More laser power requires enhanced 
input optics

• Faraday isolator 
re-polarizes and 
dumps returning 
light before it 
enters the laser 
enclosure

• IO R&D from 
University of 
Florida
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Active vibration isolation in HAM 6 
(detection chamber)

• Signals from on- 
board sensors are 
used in the 
actuation scheme

• ISI will provide a 
quiet platform for 
GW photodiodes

• Stanford R&D
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ISI Install
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Isolated and suspended output mode 
cleaner

• OMC will remove 
‘junk’ from 
detection port 
light

• In-vacuum 
(isolated) 
photodiodes 
tuned for DC 
readout scheme

• OMC – Caltech, 
GEO
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Additional eLIGO changes

• Upgraded Thermal compensation on inner mirrors
• Replace viton stop tips with silica tips
• Replace selected control system magnets with lower- 

noise versions
• Mount baffles to reduce stray light
• Intense commissioning continues to precede the start 

of S6
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Projected strain sensitivity for eLIGO

Enhanced LIGO
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LIGO is operated by Caltech and MIT for 
the National Science Foundation

• NSF Cooperative Agreement #  NSF-PHY-0757058
• LIGO’s research efforts are directed by the LIGO 

Scientific Collaboration, composed of roughly 600 
researchers at more than 40 domestic and 
international institutions.

• Apply for a summer research internship!
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