

Preparations for Gravitational Wave Searches with the Enhanced LIGO Detectors

Today's Talk

- General relativity framework
- Some potential gravitational wave sources
- Overview of interferometer operations
- Enhanced LIGO improvements

Dale Ingram LIGO Hanford Observatory ingram_d@ligo-wa.caltech.edu

With thanks to Michael Landry, Fred Raab, Vern Sandberg, Kate Dooley

Geometry lies at the heart of general relativity

Universe with *positive* curvature. Diverging line converge at great distances. Triangle angles add to more than 180°.

Universe with *negative* curvature. Lines diverge at ever increasing angles. Triangle angles add to less than 180°.

Universe with no curvature. Lines diverge at constant angle. Triangle angles add to 180°.

General relativity tells us that spacetime has measurable properties such as curvature and stiffness

John Wheeler's view of Einstein's description of space, time and gravity

Curvature is real!

Not only the path of matter, but even the path of light is affected by gravity from massive objects

Gravitational Lens G2237+0305

A massive object shifts apparent position of a star

Einstein Cross Photo credit: NASA and ESA

Gravitational waves -- ripples in the curvature of spacetime

Fluctuations in the quadrupole moment of a system of masses will produce 'kinks' in the spacetime fabric. The kinks will propogate as transverse waves. Rendering of space stirred by two orbiting black holes:

Sources: Bursts such as supernovae could yield GW signals depending on the asymmetry of the explosion

Pulsars require an asymmetric mass distribution (bumps)

Inspirals are expected to be the loudest sources

Why use interferometers as gravitational wave detectors?

Gravitational waves shrink space along one axis as they stretch space along a perpendicular axis. Both axes are perpendicular to the direction of propagation.

Mark the space at (x) and (y); look for the lengths of the ellipse axes to fluctuate

The basic Michelson design provides the ability to monitor a circle of space

Fabry Perot cavities and power recycling provide additional sensitivity

"Sensitivity" means displacement sensitivity – the ability of the detector to sense differential motions of the mirrors

How sensitive?

Vacuum chambers provide quiet homes for the mirrors

View inside Corner Station

Standing at vertex beam splitter

1/22/2009

Evacuated Beam Tubes Provide Clear Path for Light

Initial LIGO PSL Components: All-Solid-State Nd: YAG Laser, Pre-mode Cleaner, Reference Cavity

Beam path from PSL through HAM1 and HAM2

Pendulum suspensions give mirrors freedom of movement in the LIGO frequency band

Optics suspended as simple pendulums

Local sensors/actuators provide damping and control forces

Mirror is balanced on 1/100th inch diameter wire to 1/100th degree of arc

1/22/2009

Core Optics

- Substrates: SiO2
 - » 25 cm Diameter, 10 cm thick
 - » Homogeneity < 5 x 10-7
 - » Internal mode Q's > 2 x 106
- Polishing
 - » Surface uniformity < 1 nm rms
 - » Radii of curvature matched < 3%
- Coating
 - » Scatter < 50 ppm
 - » Absorption < 2 ppm
 - » Uniformity <10-3
- Production involved 6 companies, NIST, and LIGO

Suspended Core Optic

BSC Passive Vibration Isolation

AS port signal sensing: Low noise configuration splits the light onto an array of photodiodes (looking down)

1/22/2009

Enhanced LIGO – transition from 10W to 35W of laser power

- Prepared by AEI/LZH (Germany)
- World-leading performance in frequency and amplitude stability
- Base unit for Advanced LIGO

More laser power requires enhanced input optics

- Faraday isolator re-polarizes and dumps returning light before it enters the laser enclosure
- IO R&D from University of Florida

Active vibration isolation in HAM 6 (detection chamber)

- Signals from onboard sensors are used in the actuation scheme
- ISI will provide a quiet platform for GW photodiodes
- Stanford R&D

ISI Install

Isolated and suspended output mode cleaner

- OMC will remove 'junk' from detection port light
- In-vacuum (isolated) photodiodes tuned for DC readout scheme
- OMC Caltech, GEO

Additional eLIGO changes

- Upgraded Thermal compensation on inner mirrors
- Replace viton stop tips with silica tips
- Replace selected control system magnets with lowernoise versions
- Mount baffles to reduce stray light
- Intense commissioning continues to precede the start of S6

Projected strain sensitivity for eLIGO

LIGO is operated by Caltech and MIT for the National Science Foundation

- NSF Cooperative Agreement # NSF-PHY-0757058
- LIGO's research efforts are directed by the LIGO Scientific Collaboration, composed of roughly 600 researchers at more than 40 domestic and international institutions.
- Apply for a summer research internship!

